Дифракция волн Естественный и поляризованный свет Строение атомного ядра Закон радиоактивного распада Дифракционная решетка Электромагнитная природа света

Физика Курс лекций и примеры решения задач

Строение атомного ядра.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса, и структура которого определяет химический элемент, к которому относится атом. Размеры ядер различных атомов составляют от одного фемтометра, что в более чем в 100 тысяч раз меньше размеров самого атома. Масса ядер примерно в 4000 раз больше массы входящих в атом электронов и сильно зависит от количества входящих в него частиц и энергии их связи.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным \hbar/2 = h/ 4\pi[сн 1] и связанным с ним магнитным моментом.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Количество протонов в ядре называется его зарядовым числом ~Z — это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева. Количество протонов в ядре полностью определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом ~N. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом ~A(очевидно ~A = N + Z) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Энергия связи, ядерные силы.

Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.

Экспериментально было обнаружено, что для всех стабильных ядер масса ядра меньше суммы масс составляющих его нуклонов, взятых по отдельности. Эта разница называется дефектом массы или избытком массы и определяется соотношением:

~\Delta M(Z, A) = Zm_p + (A-Z)m_n - M(Z, A),

где ~m_p и ~m_n  — массы свободного протона и нейтрона, ~M(Z, A) — масса ядра.

Согласно принципу эквивалентности массы и энергии дефект массы представляет собой массу, эквивалентную работе, затраченной ядерными силами, чтобы собрать все нуклоны вместе при образовании ядра. Эта величина равна изменению потенциальной энергии нуклонов в результате их объединения в ядро.

Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:

~E_c = ( Zm_p + (A-Z)m_n - M(Z, A))c^2,

где ~c — скорость света в вакууме.

Согласно соотношению Эйнштейна дефект массы и энергия связи нуклонов в ядре эквивалентны:

\!  \Delta E = \Delta m c^2 = {c^2}{\Delta}m

где Δm — дефект массы и с — скорость света в вакууме.

Радиоактивность, альфа, бета, гамма распад и их закономерности.

Радиоакти́вность (от лат. radius «луч» и āctīvus «действенный») — свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов[1]. Соответствующее явление называется радиоакти́вным распа́дом. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Правило смещения Содди для α-распада:

{}^{A}_{Z}\textrm{X}\rightarrow {}^{A-4}_{Z-2}\textrm{Y} + {}^{4}_{2}\textrm{He}.

Пример:

{}^{238}_{92}\textrm{U}\rightarrow {}^{234}_{90}\textrm{Th} + {}^{4}_{2}\textrm{He}.

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.

{}^{1}_{0}\textrm{n}\rightarrow {}^{1}_{1}\textrm{p} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

Правило смещения Содди для β − -распада:

{}^{A}_{Z}\textrm{X}\rightarrow {}^{A}_{Z+1}\textrm{Y} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

Пример:

{}^{3}_{1}\textrm{H}\rightarrow {}^{3}_{2}\textrm{He} + {}^{0}_{-1}\textrm{e} + \bar\nu_e

После β − -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер.

Закон радиоактивного распада.

Закон радиоактивного распада — закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

\frac{dN}{dt} = -\lambda N,

что означает, что число распадов за интервал времени ~tв произвольном веществе пропорционально числу имеющихся в образце атомов ~N.

В этом математическом выражении ~\lambda— постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеющая размерность с−1. Знак минус указывает на убыль числа радиоактивных ядер со временем.

Этот закон считается основным законом радиоактивности, из него было извлечено несколько важных следствий, среди которых формулировки характеристик распада — среднее время жизни атома и период полураспада

Ядерные реакции деления и синтеза

Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

При нормальной температуре слияние ядер невозможно, так как положительно заряженные ядра испытывают огромные силы кулоновского отталкивания. Для синтеза легких ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие ядерных сил притяжения будет превышать кулоновские силы отталкивания. Для того чтобы произошло слияние ядер, необходимо увеличить их подвижность, то есть увеличить их кинетическую энергию. Это достигается повышением температуры. За счет полученной тепловой энергии увеличивается подвижность ядер, и они могут подойти друг к другу на такие близкие расстояния, что под действием ядерных сил сцепления сольются в новое более сложное ядро. В результате слияния легких ядер освобождается большая энергия, так как образовавшееся новое ядро имеет большую удельную энергию связи, чем исходные ядра. Термоядерная реакция — это экзоэнергетическая реакция слияния легких ядер при очень высокой температуре (107 К).

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде

{}^{2}_{1}\textrm{H}(D) + {}^{3}_{1}\textrm{H}(T)\rightarrow {}^{4}_{2}\textrm{He}+ {}^{1}_{0}\textrm{n}+ энергия (17,6 МэВ).

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица[4]. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для термоядерного синтеза[1].

№ 1.2.10.

Процесс электролиза на кислородной станции лечебно-профилактического учреждения проходит при напряжении U = 4 В, нормальном атмосферном давлении и температуре t = 20 °С. Сколько электроэнергии необходимо при этом затратить для получения V = 10 м3 кислорода, если КПД установки η = 65%?

Решение

Запишем уравнение состояния идеального газа для кислорода:

,  (1)

В соотношении (1) p – давление кислорода, V – его объем, m – масса, μ – молярная масса, Т – абсолютная температура, R – универсальная газовая постоянная. Из (1) выразим массу кислорода:

  (2)

В соответствии с законом Фарадея масса кислорода, выделившегося в процессе электролиза, определяется выражением:

, (3)

где q – заряд прошедший через раствор электролита в ходе электролиза, k – электрохимический эквивалент кислорода. Приравнивая правые части (2) и (3), получим:

. (4)

Из (4) можно выразить величину заряда:

.  (5)

По определению КПД установки по электролизу может быть записано как

, (6)

где Ап – полезная работа, совершенная в ходе электролиза, Аз – соответственно затраченная работа. Ап может быть определена как

,  (7)

где I – ток электролиза, U – напряжение, е – время. Подставляя q из (5) в (7), получим:

.  (8)

Подставляя Ап из (8) в (6), получим:

 , (9) 

откуда и найдем Аз:

.  (10)

Подставляя в (10) численные значения входящих в него величин, получим:

.


Дифракция ренгеновских лучей на пространственной решетке