Дифракция волн Естественный и поляризованный свет Строение атомного ядра Закон радиоактивного распада Дифракционная решетка Электромагнитная природа света

Физика Курс лекций и примеры решения задач

Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.

    Обычные  дифракционные решетки, у которых период   имеет   величину порядка  длины  световой волны,   для   наблюдения дифракции рентгеновских лучей  неприемлемы,  т.к. длины рентгеновских волн в 104 раз меньше световых волн. Пространственной  дифракционной решеткой для рентгеновских    лучей  могут служить кристаллы, у которых расстояние между рассеивающими центрами с длиной волны рентгеновских лучей. В кристаллах атомы расположены упорядочено, образуя трехмерную решетку. Рентгеновские лучи возбуждают атомы кристаллической решетки, вызывая появление вторичных волн, которые интерферируют подобно вторичным волнам от щелей дифракционной решетки. Разбив кристалл на ряд параллельных плоскостей ,проходящих через узлы решетки, можно выделить в нем большое число параллельных атомных слоев.

Пусть падающий пучок рентгеновских лучей образует угол 0 с одной из систем таких плоскостей. Кристаллическую структуру можно рассматривать как объемную дифракционную решетку с периодом d. Разность хода лучей

А=2 d sinθ Условие максимума для междуатомной интерференции будет 2 d sinθ = kλ, где к = 1,2,3,.- причем разным к соответствуют разные углы скольжения 9. Для дифракции рентгеновских лучей в кристаллах выражение 2dsinθ=kλ называется формулой Вульфа-Брэгга. Изучая дифракцию рентгеновских лучей, можно по измеренным углам 9 для дифракционных максимумов и по известной длине волны монохроматического рентгеновского излучения исследовать внутреннюю структуру кристаллов.

3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.

     Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.

Испускательная и поглощательная способность. Спектральной хар-кой теплового МЮизлучения тела служит спектральная плотность энергетической светимости (испускательная

способность), равная 26.files/image037.jpg, где

ЗФ26.files/image038.jpg -- энергия электромагнитного излучения,

испускаемого за единицу времени с единицы площади поверхности тела в интервале частот от

26.files/image039.jpg Спектральная плотность энергетической светимости численно равна мощности излучения с единицы площади пов-ти этого тела в интервале частот единичной ширины. Единицей измерения является

Дж/(м2с)

Спектральной хар-кой поглощения электромагнитных волн телом служит спектральная поглощательная способность

ЗЛ(поглощательная способность)..

Он показывает, какая доля энергии dW 26.files/image040.jpgпадающего на пов-ть тела эл. магн излучения с частотами от 26.files/image041.jpgпоглощается телом.

Эта величина – безразмерная.

Законы теплового излучения абсолютно черного тела (Закон Стефана Больцмана). Тело наз-ся черным (абсолютно черным), если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации (упорядочивания светового в-ра) и направления распространения. Следовательно, коэф-т поглощения абсолютно черного тела (АЧТ) тождественно равен единице. Спектральная плотность энергетической светимости АТЧ зависит только от частоты νизлучения и термодинамической температуры Т тела. Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты.(длины волны) и температуры: 26.files/image042.jpg.

Для черного тела, поэтому из закона К. вытекает, что 26.files/image043.jpgля черного тела равна 26.files/image044.jpg Таким образом, универсальная функция Кирхгофа 26.files/image045.jpgесть не что иное, как спектральная плотность энергетической светимости черного тела. Энергетическая светимость АТЧ зависит только от температуры, т.е. Энергетическая светимость АТЧ пропорциональна четвертой степени его термодинамической температуры:

26.files/image046.jpg , где σ-- постоянная Больцмана. Этот

закон – закон Стефана-Больцмана. Задача оты скания вида функции Кирхгофа (выяснения спектрального состава

температурах ЧТ имеет вид см. рис.. При разный частотах 26.files/image048.jpgа в области больших частот

(правые ветви кривых вдали от максимумов), зависимость 26.files/image049.jpgот частоты имеет вид

где a1 -- постоянная величина. 26.files/image050.jpg

Существование на каждой кривой более или менее ярко выраженного максимума свидетельствует о том, что энергия излучения ЧТ распределена по спектру неравномерно: черное тело почти не излучает энергии в области очень малых и очень больших частот. По мере повышения

температуры тела максимум 26.files/image051.jpgсмещается в область больших частот. Площадь, ограниченная кривой 26.files/image052.jpgи осью абсцисс, пропорциональна энергетической светимости ЧТ. Поэтому в соответствии с законом Стефана Больцмана она возрастает пропорционально T4 .

Интерференция света. Пространственная и временная когерентность. Оптическая длина пути и оптическая разность хода. Способы наблюдения интерференционных картин.

     Явление, при котором происходит пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн, называется интерференцией.

Два колебательных процесса называются когерентными, если разность фаз Δφ=φ1 - φ2 складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.

Свет состоит из последовательности кратковременных импульсов (цугов волн) со средней длительностью τ, фаза которых имеет случайную величину. Пусть средняя длина цугов равна l0, очевидно, что взаимодействовать между собой могут только те цуги волн, пространственное расстояние между которыми l ког < l0, в противном случае в точке наблюдения цуги, между которыми рассматривается взаимодействие, просто не встретятся. Величина l ког=l0 называется длиной когерентности, и она определяет максимально допустимую разность хода между взаимодействующими волнами, при которой еще может наблюдаться явление интерференции. А время, равное средней длительности излучения цугов, называется временем когерентности t ког=< τ >. В течение этого времени начальная фаза волны сохраняет свою постоянную величину. Время и длина когерентности связаны между собой очевидным соотношением

l ког = с*t ког

Оптическая длина пути.

L = S*n, S - геометрическая длина пути, n – показатель преломления среды.

Оптическая разность хода – разность оптических длин, проходимых волнами.

Δ = L2 - L1 = S2*n2 – S1*n1

Способы получения интерференционных картин.

Метод Юнга. Свет от ярко освещено щели падает на две щели играющие роль когерентных источников.

Зеркала Френеля. Свет от источника падает расходящимся пучком на 2 плоских зеркала, расположенных под малым углом. Роль когерентных источников играют мнимые изображения источника. Экран защищен от прямого попадания лучей заслонкой.

БФ 

Бипризма Френеля. Свет от источника преломляется в призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых когерентных источников.

Зеркало Ллойда. Точечный источник находится близко к поверхности плоского зеркала. Когерентными источниками служат сам источник и его мнимое изображение.

3) Тепловое излучение. Квантовая гипотеза и формула Планка. Следствия формулы Планка (закон Стефана-Больцмана, Вина, Рэлея-Джинса).

     Тепловое излучение. Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.

Законы теплового излучения абсолютно черного тела (Закон Стефана Больцмана). Тело наз-ся черным (абсолютно черным), если оно при любой температуре полностью поглощает всю энергию падающих на него электромагнитных волн независимо от их частоты, поляризации (упорядочивания светового в-ра) и направления распространения. Следовательно, коэф-т поглощения абсолютно черного тела (АЧТ) тождественно равен единице. Спектральная плотность энергетической светимости АТЧ зависит только от частоты νизлучения и термодинамической температуры Т тела. Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты.

(длины волны) и температуры: 27.files/image057.jpg. Для

черного тела, поэтому из закона К.

вытекает, что 27.files/image058.jpgля черного тела равна 27.files/image059.jpg

Таким образом, универсальная функция Кирхгофа 27.files/image060.jpgесть не что иное, как спектральная

плотность энергетической светимости черного тела. Энергетическая светимость АТЧ зависит только от температуры, т.е. Энергетическая светимость АТЧ пропорциональна четвертой степени его термодинамической температуры:

27.files/image061.jpg , где σ-- постоянная Больцмана. Этот

закон – закон Стефана-Больцмана.

следствие ф-лы Планка. Согласно квантово теории Планка, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия ванта пропорциональна частоте колебания

постоянная Планка. Т.к. 27.files/image062.jpgизлучение испускается порциями, то энергия осциллятора (стоячей волны) εможет принимать лишь определенные дискретные значения, кратные целому числу эл-тарн порций энергии 27.files/image063.jpgФ-ла Планка (нахождение универсальной

функции Кирхгофа): 27.files/image064.jpg

27.files/image065.jpg

спектральные плотности энергетической светимости ЧТ, X — длина волны, (О — круговая частота, с - скорость света в вакууме, к -постоянная Больцмана, Т - термодинамическая температура, h - постоянная Планка, % — постоянная Планка, дел. на 2ж =

1.05 • 1(Г34 Дж ■ с . Следствие: если

27.files/image066.jpg

Планка следует ф-ла Релея-Джинса:

27.files/image067.jpg . В области больших частот 27.files/image068.jpgи единицей в знаметеле.

27.files/image069.jpg тогда получим ф-лу 27.files/image070.jpg эта ф-ла совпадает с флой 27.files/image071.jpg, причем 27.files/image072.jpg

40. Закон Вина. Опираясь на законы термо- и электродинамики, Вин установил зависимость длины волны λmax , соответствующей максимуму функции rλ,T , от температуры Т. Согласно закону смещения Вина, 27.files/image073.jpg

27.files/image074.jpg

Т.е. длина волны Лтах , соответствующая

максимальному значению спектральной плотности энергетической светимости ЧТ, обратно пропорциональна его термодинамической температуре, b—постоянная

Вина = 2.9-10- м-К . Закон Вина - закон смещения т.к. он показывает смещение положения максимума функции Гд j по мере

возрастания температуры в область коротких длин волн. Он объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение.

Формула Релея-Джинса. Попытка теоретического вывода зависимости универсальной функции Кирхгофа. В данном случае был применен закон равномерного распределения энергии по степеням свободы. Формула Релея-Джинса для спектральной плотности энергетической светимости имеет ви

27.files/image075.jpg , где 27.files/image076.jpg– средняя энергия

осциллятора с собственной частотой ν.

Для осциллятора, совершающего колебания, средние значения кинетической и потенциальн энергий одинаковы, поэтому средняя степень каждой колебательной степени свободы

27.files/image077.jpg согласуется с

экспериментальными данными только в област достаточно малых частот и больших температу В области больших частот она резко с ними расходится. Если попытаться получить закон Стефана-Больцмана, то получается абсурд, т.к. вычисленная с использованием ф-лы Р.-Д. энергетическая светимость черного тела

27.files/image078.jpg в то время как по з. Стеф.-Больц. Re пропорциональна четвертой степени температуры.

Билет №28

2) Элементарная Боровская теория водородного атома.

3) Закон радиоактивного распада. Активность, период полураспада. Среднее время жизни.

     Выражение, констатирующее, что число радиоактивных ядер данного изотопа убывает со временем по экспоненциальному закону, носит название закона  радиоактивного распада. N=N0e-λt

где N0 - число нераспавшихся ядер в начальный момент времени, N - число нераспавшихся ядер в момент времени t

Для числа уже распавшихся ядер N' этот закон будет иметь вид N'=N0-N=N0 (1-е-λt) Время, за которое распадается половина первоначального числа ядер называется периодом полураспада Т1/2 . Величина Т1/2 определяется условием 1/2N0=N0e^λT1/2 откуда средняя продолжительность жизни всех первоначально существовавших No ядер выразится следующим образом: 28.files/image010.jpgУчитывая это, закон радиоактивного распада можно записать в виде: 28.files/image011.jpg Для характеристики скорости радиоактивного распада ядер вводится понятие активности радиоактивного препарата, равное числу распадов в единицу времени: 28.files/image012.jpgВоспользовавшись N=N0e^-λt  и дифференцируя 28.files/image013.jpg,получим 28.files/image014.jpg Полагая  t=0 для активности в начальный момент времени получим A0=λN0 следовательно изменение активности со временем имеет вид A=A0e^-λt

Билет 29

2) Оптическая активность. Вращение плоскости поляризации. Эффект Фарадея.

     Оптическая активность – способность некоторых веществ вызывать вращение плоскости поляризации проходящего через них света. Оптическая активность бывает двух видов: естественная и искусственная.

Естественной оптической активностью обладают некоторые кристаллические тела, жидкости и растворы оптически активных веществ без внешних воздействий. Искусственная оптическая активность наблюдается в веществах, ранее оптически неактивных, при наложении внешних воздействий.Основной закон оптической активности – закон Био, связывает угол поворота плоскости поляризации ф с длиной активной среды l.

ф=a*l где a - постоянная вращения, измеряемая в град*мм^-1.Поворот может быть либо положительный либо отрицательный. Эффект Фарадея заключается в том, что в магнитном поле первоначально неактивное  вещество становится оптически активным. При распространении света в веществе  вдоль вектора напряженности магнитного поля плоскость поляризации световой  волны вращается.Угол поворота плоскости поляризации равен ф=VHl, где V-постоянная Верде, l-длинна активной среды,H-Напряженность магнитного поля на оси соленоида.

3) Квантовые свойства света. Тормозное рентгеновское излучение. Коротковолновая граница сплошного рентгеновского спектра.

    В рамках квантовой теории свет представляет собой поток дискретных частиц,названных фотонами.Среди разнообразных явлений, в которых проявляются квантовые свойства света,

одно из самых важных мест занимает фотоэлектрический эффект. Различают два вида фотоэлектрического эффекта ? внешний и внутренний. Внешним фотоэффектом называется испускание электронов веществом при облучении его электромагнитным излучением. При внутреннем фотоэффекте оптически возбужденные электроны остаются внутри освещаемого

 вещества, не нарушая его электрическую нейтральность.

Согласно Эйнштейну, свет частотой v не только испускается отдельными квантами, но также в виде  квантов (фотонов) распространяется в пространстве и поглощается веществом.

Фотоэффект же возникает в результате неупругого столкновения фотона с электроном в материале катода. При таком столкновении фотон поглощается, а его энергия передается

электрону.К рентгеновскому относится электромагнитное излучение, занимающее спектральную область между γ- и УФ-излучением в диапазоне длин волн λ от 10-12 до 10-7 м.

Рентгеновские спектры, возникающие при бомбардировке антикатода рентгеновской трубки электронами, бывают двух видов: сплошные и линейчатые.  Сплошные спектры возникают при торможении электронов в веществе антикатода и являются обычным тормозным излучением электронов. Их вид не зависит от материала антикатода. Линейчатые спектры появляются с повышением напряжения на трубке. Они состоят из отдельных линий и зависят от материала антикатода. Каждый элемент из которого сделан антикатод обладает своим, характерным для него линейчатым спектром. Поэтому такие спектры названы характеристическими. С увеличением напряжения на трубке коротковолновая граница сплошного спектра смещается, а линии характеристического спектра не меняют своего положения, становясь более интенсивными.

Билет №30

2) Дифракция Фраунгофера на одной щели. Распределение интенсивности света при дифракции на щели. Влияние ширины щели на дифракционную картину.

     Дифракция Фраунтгофера это дифракция в параллельных лучах.В случае дифракции в параллельных лучах амплитуда вторичных волн одинакова для любого элемента, не зависит от расстояния до точки наблюдения, и коэффициент пропорциональности С(ϕ) = 1. Это означает что результирующую амплитуду световых колебаний в точке наблюдения для случая дифракции Фраунгофера можно записать в виде: 30.files/image008.gif

Интенсивность: 30.files/image010.gif

30.files/image012.gifГрафик распределения интенсивности Iϕ в зависимости от sinϕ имеет вид:

Дифракционная картина четче когда размеры щели сопоставимы с длинной волны.

3) Квантовые свойства света. Эффект Комптона и его теория. Законы сохранения импульса и энергии в эффекте Комптона.

     В рамках квантовой теории свет представляет собой поток дискретных частиц,названных фотонами. Среди разнообразных явлений, в которых проявляются квантовые свойства света, одно из самых важных мест занимает фотоэлектрический эффект. Различают два вида фотоэлектрического эффекта ? внешний и внутренний. Внешним фотоэффектом называется испускание электронов веществом при облучении его электромагнитным излучением. При внутреннем фотоэффекте оптически возбужденные электроны остаются внутри освещаемого  вещества, не нарушая его электрическую нейтральность.Согласно Эйнштейну, свет частотой v не только испускается отдельными квантами, но также в виде  квантов (фотонов) распространяется в пространстве и поглощается веществом. Фотоэффект же возникает в результате неупругого столкновения фотона с электроном в материале катода. При таком столкновении фотон поглощается, а его энергия передается электрону. Эффект Комптона состоит в увеличении длины волны коротковолнового (рентгеновского и гамма-) излучения, происходящем при его рассеянии легкими атомами (вернее, электронами, входящими в состав легких атомов). Теория эффекта Комптнона. Эффект Комптона можно объяснить, рассматривая его как процесс  упругого столкновения рентгеновских фотонов с веществом. При этом необходимо использовать  тот факт, что в опытах Комптона все легкие атомы ведут себя одинаково. Это позволяет сделать  предположение, что процесс рассеяния сводится к упругому столкновению фотона с электронами  атома. Поскольку в легких атомах связь электрона с ядром слаба, то в первом приближении  можно рассматривать рассеяние фотонов на практически свободных электронах. При  взаимодействии фотона и электрона должны выполняться законы сохранения импульса и энергии

№ 1.3.5.

При исследовании фармакологического препарата используется масс-спектрограф, в котором электрон, ускоренный электрическим полем, попадает в магнитное поле индукцией В = 0,02 Тл. Определить период обращения электрона.

Решение

Условием равновесия электрона на круговой орбите является равенство центростремительной силы и силы Лоренца:

.  (1)

Сила Лоренца определяется выражением

,  (2)

где B – индукция магнитного поля, e – заряд электрона, u – скорость его движения. Центростремительная сила определяется выражением

,  (3)

где r – радиус окружности, по которой движется электрон в магнитном поле, m – масса электрона. Подставляя (2) и (3) в (1), получим:

.  (4)

Из (4) выразим скорость электрона:

 .  (5)

С другой стороны, скорость электрона равна отношению длины окружности, которую он описывает, к периоду его обращения:

. (6)

Из (5) и (6) следует, что

.  (7)

Выражая из (7) период обращения электрона и подставляя численные значения входящих в полученное выражение величин, получим:


Дифракция ренгеновских лучей на пространственной решетке