Дифракция волн Естественный и поляризованный свет Строение атомного ядра Закон радиоактивного распада Дифракционная решетка Электромагнитная природа света

Физика Курс лекций и примеры решения задач

Дифракция в параллельных лучах (дифракция Фраунгофера). Дифракция Фраунгофера на одной щели.

Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызывающего дифракцию. Параллельный пучок создают, помещая источник света в фокусе собирающей линзы. Дифракционную картину с помощью второй собирающей линзы, установленной за препятствием, фокусируют на экран.

Дифракция Фраунгофера плоской монохроматической волны на одной щели шириной a.

Оптическая разность хода Δ=a*sinφ. Разобьем открытую часть волновой поверхности на зоны Френеля. Все точки волнового фронта в плоскости щели имеют одинаковую фазу и амплитуду колебаний. Поэтому суммарная интенсивность колебаний от двух соседних зон равна 0.

1) если число зон Френеля четное, то: a*sinφ=±mλ (m=1,2,3…) – условие дифракционного минимума (полная темнота).

2) если число зон Френеля ytчетное, то: a*sinφ=±(2m+1)λ/2 (m=1,2,3…) – условие дифракционного максимума.

В направлении φ=0 щель действует как одна зона Френеля и в этом направлении свет распространяется с наибольшей интенсивностью – центральный дифракционный максимум.

Распределение интенсивности на экране, получаемое вследствие дифракции, называется дифракционным спектром.

3) Уравнение Шредингера. Собственные функции и собственные значения. Стационарное уравнение Шредингера. Квантово-механическое представление свободно движущейся частицы.

i*ћ* ∂ψ/ ∂t = - ћ^2 *Δψ/ 2m  + U(x,y,z,t)* ψ

m – масса микрочастицы, Δ - оператор Лапласа (в декартовых координатах оператор Лапласа имеет вид Δ= ∂^2/∂x^2 + ∂^2/∂y^2 + ∂^2/∂z^2), U(x,y,z,t) − функция координат и времени, описывающая воздействие на частицу силовых полей.

Уравнение называется общим уравнением Шредингера. Оно дополняется условиями, накладываемыми на функцию Ψ :

1) Ψ − конечная, непрерывная и однозначная.

2) производные от Ψ по x, y, z, t непрерывны.

3) функция |Ψ|^2 должна быть интегрируема.

ћ^2 *Δψ/ 2m + (E - U(x,y,z,t))* ψ = 0

Это уравнение не содержит времени и называется стационарным уравнением Шредингера.

Физический смысл имеют только регулярные волновые функции — конечные,

однозначные и непрерывные вместе со своими первыми производными. Эти

условия выполняются только при определенном наборе E . Эти значения

энергии называются собственными. Решения, которые соответствуют

собственным значениям энергии, называются собственными функциями.

Собственные значения E могут образовывать как непрерывный, так и

дискретный ряд. В первом случае говорят о непрерывном (или сплошном)

спектре, во втором — о дискретном спектре.

Свободная частица − движется с постоянной скоростью V в отсутствии силовых полей, т.е. U(x, y, z)≡0. Уравнение Шредингера примет вид: ∂^2 ψ /∂x^2 + k^2 ψ =0, где k^2=2mE / ћ^2

Частное решение ψ(x) = A0*cos(kx);

в комплексной форме - ψ(x) = A0*e^(ikx)+B0*e^(-ikx)

ψ(x,t) = A0*e^[-i(ωt - kx)]+B0*e^[-i(ωt + kx)] = A0*e^[-i/ ћ *(Et - px)]+B0*e^[- i/ ћ (Et + px)] – полная волновая ф-ия.

Это есть суперпозиция двух волн Де Бройля, распространяющихся одна в положительном, другая в отрицательном направлениях, что соответствует движение частицы вдоль (B0=0) или против (A0=0) оси x.

Билет №3.

2) Дифракция Фраунгофера на системе щелей. Дифракционная решетка.

Дифракционная решетка – система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Суммарная дифракционная картина – результат интерференционных волн, идущих от всех щелей – в дифракционной решетке осуществляется многолучевая интерференция когерентных пучков света, идущих от всех щелей. Если ширина каждой щели – a, ширина непрозрачных участков – b, то d=a+b называется постоянной (периодом) дифракционной решетки.

Разности хода лучей от двух соседних щелей будут одинаковы в пределах всей дифракционной решетки: Δ = d*sinφ

Условие главных максимумов: d*sinφ = ±mλ (m=1,2,3…)

Условие главных минимумов: a*sinφ = ±mλ (m=1,2,3…)

Между двумя главными максимумами располагается N-1 дополнительных минимумов, разделенных вторичными максимумами, создающими слабый фон. Условие дополнительных минимумов: d*sinφ = ±m’ λ/N, где m’ может принимать все целочисленные значения кроме 0, N, 2N,…при которых  данное условие переходит в условие главных максимумов. Амплитуда главного максимума есть сумма амплитуд колебаний от каждой щели Amax = N*A1. Поэтому интенсивность главного максимума в N^2 раз больше интенсивности I1, создаваемой одной щелью в направлении главного максимума: Imax = N^2 * I1. Положение главных максимумов зависит от длины волны λ, поэтому при пропускании через решетку белого света все максимумы, роме центрального разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная – наружу. Поэтому дифракционная решетка может быть использована как спектральный прибор, для разложения света в спектр и измерения длин волн. Число главных максимумов: m≤d / λ.

3) Квантовые свойства света. Эффект Комптона и его теория.

В рамках квантовой теории свет представляет собой поток дискретных частиц,
названных фотонами. Среди разнообразных явлений, в которых проявляются квантовые свойства света, одно из самых важных мест занимает фотоэлектрический эффект. Различают два вида фотоэлектрического эффекта внешний и внутренний. Внешним фотоэффектом называется испускание электронов веществом при облучении его электромагнитным излучением. При внутреннем фотоэффекте оптически возбужденные электроны остаются внутри освещаемого вещества, не нарушая его электрическую нейтральность. Согласно Эйнштейну, свет частотой ν не только испускается отдельными квантами, но также в виде квантов (фотонов) распространяется в пространстве и поглощается веществом. Фотоэффект же возникает в результате неупругого столкновения фотона с электроном в материале катода. При таком столкновении фотон поглощается, а его энергия передается электрону.

В эффекте Комптона наиболее полно проявляются корпускулярные свойства света. Исследуя рассеяние монохроматического рентгеновского излучения веществами с легкими атомами Комптон обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также излучение более длинных волн. Опыты показали, что разность Δλ=λ’-λ не зависит от длины волны λ падающего излучения и природы рассеивающего в-ва, а определяется только величиной угла рассеивания θ: Δλ=λ’-λ=2λс*(sin(θ/2) )^2, где λ’ – длина волны рассеянного излучения, λс – комптоновская длина волны. Эффектом Комптона называется упругое рассеяние коротковолнового излучения на свободных электронах в-ва, сопровождающееся увеличением длины волны. Эффект Комптона – результат упругого столкновения рентгеновских фотонов со свободными электронами в-ва. В процессе этого столкновения фотон передает часть своих энергии и импульса в соответствии с законами их сохранения. Эффект Комптона не может наблюдаться  в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

При изменении магнитного потока через поверхность, ограниченную некоторым контуром, в нем возникает ЭДС индукции Е, величина которой равна

,

где ΔΦ – изменение магнитного потока, Δt – промежуток времени, за который это изменение произошло.

Явление самоиндукции заключается в том, что при изменении тока в цепи возникает ЭДС, противодействующая этому изменению. Магнитный поток Φ через поверхность, ограниченную контуром, прямо пропорционален силе тока I в контуре: , где L – индуктивность контура. Таким образом

.

Энергия магнитного поля выражается формулой

.


Дифракция ренгеновских лучей на пространственной решетке