Дифракция волн Естественный и поляризованный свет Строение атомного ядра Закон радиоактивного распада Дифракционная решетка Электромагнитная природа света

Физика Курс лекций и примеры решения задач

Вынужденное излучение

До сих пор мы рассматривали только два вида переходов атомов между энергетическими уровнями: спонтанные (самопроизвольные) переходы с более высоких на более низкие уровни и происходящие под действием излучения (вынужденные) переходы с более низких на более высокие уровни. Переходы первого вида приводят к спонтанному испусканию атомами фотонов, переходы второго вида обусловливают поглощение излучения веществом. В 1918 г. Эйнштейн обратил внимание на то, что двух указанных видов излучения недостаточно для объяснения существования состояний равновесия между излучением и веществом. Действительно, вероятность спонтанных переходов определяется лишь внутренними свойствами атомов и, следовательно, не может зависеть от интенсивности падающего излучения, в то время как вероятность «поглощательных» переходов зависит как от свойств атомов, так и от интенсивности падающего излучения. Для возможности установления равновесия при произвольной интенсивности падающего излучения необходимо существование

67.Коэффициенты Эйнштейна.

Пусть Рпт — вероятность вынужденного перехода атома в единицу времени с энергетического уровня Еп на уровень Ет, а Ртп — вероятность обратного перехода. Выше было указано, что при одинаковой интенсивности излучения Рпт Ртn. Вероятность вынужденных переходов пропорциональна плотности энергии «и вынуждающего переход электромагнитного поля1), приходящейся на частоту со, соответствующую данному переходу

= (ВП — Ет) /Tl) .Обозначив коэффициент пропорциональности буквой В, получим

Величины Впт и Втп называются коэффициентами Эйнштейна. Согласно сказанному выше Впт = Втп. Основываясь на равновероятности вынужденных переходов п-т и т-п, Эйнштейн дал весьма простой вывод формулы Планка. Равновесие между веществом и излучением будет достигнуто при условии, что число атомов Ыщ,, совершающих в единицу времени переход из состояния п в состояние т, будет равно числу атомов N„, совершающих переход в обратном направлении. Допустим, что£л ^* -Сгл. Тогда переходы т-п смогут происходить только под воздействием излучения. Переходы же m-n будут совершаться как вынужденно, так и спонтанно.

69. Лазеры

Практически инверсное состояние среды осуществлено в принципиально новых источниках излучения — оптических квантовых генераторах, или лазерах (от первых букв английского названия Light Amplification by Stimulated Emission of Radiation — усиление света с помощью вынужденного излучения). Лазеры генерируют в видимой, инфракрасной и ближней ультрафиолетовой областях (в оптическом диапазоне). Идея качественно нового принципа усиления и генерации электромагнитных волн, примененная в мазерах (генераторы и усилители, работающие в сантиметровом диапазоне радиоволн) и лазерах, принадлежит советским ученым Н. Г. Басову (р. 1922) и А. М. Прохорову (р. 1916) и американскому физику Ч. Таунсу (р. 1915), удостоенным Нобелевской премии 1964 г. Важнейшими из существующих типов лазеров являются твердотельные, газовые, полупроводниковые и жидкостные (в основу такого деления положен тип активной среды). Более точная классификация учитывает также и методы накачки — оптические, тепловые, химические, электроионизационные и др. Кроме того, необходимо принимать во внимание и режим генерации — непрерывный или импульсный.

Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок).



70. Рубиновый и гелий неоновый лазер

Первым твердотельным лазером (1960; \США),
работающим в видимой области спектра
(длина волны излучения 0,6943 мкм), был
рубиновый лазер (Т. Мейман (р,1927)). В нем
инверсная населенность уровней

осуществляется по трехуровневой  схеме,

предложенной в 1955 г. Н. Г. Басовым и А. М. Прохоровым. При интенсивном облучении рубина светом мощной импульсной лампы атомы хрома переходят с нижнего уровня на уровни широкой полосы 3 (рис. 310). Так как время жизни

уровень 2 (он называется метастабильным) с передачей избытка энергии решетке кристалла

атомов хрома в возбужденных состояниях мало (меньше 10-7 с), то осуществляются либо спонтанные переходы 3-1, либо наиболее вероятные безызлучательные переходы на

В гелий-неоновом лазере накачка происходит в два этапа: гелий служит носителем энергии возбуждения, а лазерное изучение дает неон. Электроны, образующиеся в разряде, при столкновениях возбуждают атомы гелия, которые переходят в возбужденное состояние 3 (рис.311). При столкновениях возбужденных атомов гелия с атомами неона происходит их возбуждение и они переходят на один из верхних уровней неона, который расположен вблизи соответствующего уровня гелия. Переход атома неона к верхнего уровня 3 на один из нижних уровней 2 приводит к лазерному излучению с к =0,6323 МКМ.

71. Строение атомного ядра

Э. Резерфорд, исследуя прохождение а-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры

Ю-14— 10_1<

н

примерно

Атомное ядро состоит из элементарных частиц

протонов и нейтронов.

Протон (р) имеет положительный заряд, равный

заряду электрона, и массу

72. Энергия связи, яд. силы.

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра.

Согласно выражению (40.9), энергия связи нуклонов в ядре

Егв = [Zmp + (А~ 2)т„ - тя] гД

(252.1)

'где тр, тп, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы ядер, а массы m атомов. Поэтому для энергии связи ядра пользуются формулой

Ясв = [Zm^ + (/1 — Z) т„ — т] с , (252.2)

тн — масса атома водорода. Так как шн больше тр на величину те, то первый хлен в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличается от массы ядра т„ как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят одинаковым результатам. Величина

A/n=[Zmp-f-(/l — Z) т„\— тя

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра. Часто вместо энергии связи рассматривают удельную энергию связи 6Еп — энергию связи, отнесенную к одному нуклону.


68.Инверсная населенность.

Для того чтобы получить усиление падающей волны, нужно (обратить населенность энергетических уровней, т. е. сделать так, 'чтобы в состоянии с большей энергией Еп находилось большее число атомов, чем в состоянии с меньшей энергией Ет. В этом случае говорят, что данная совокупность атомов имеет инверсную населенность. Согласно формуле (43.1)

Л»-^е-(Е«-ЕтУкТ.

В случае инверсной населенности

[N„INm)>\ при (£л--£"т)>р.

Распространив формально на этот случаи распределение (,43.1), мы получим для Г отрицательное значение. Поэтому состояния с инверсной населенностью называют иногда состояниями с отрицательной температурой. Изменение интенсивности света при прохождении через поглощающую среду описывается формулой

/ = /0£~~ . (43.2) В веществе с инверсной населенностью энергетических уровней вынужденное излучение может превысить поглощение света атомами, вследствие чего падающий пучок света при прохождении через вещество будет усиливаться. В случае усиления падающего пучка явление протекает так, как если бы коэффициент поглощения и в формуле (43.2) стал отрицательным. Соответственно совокупность атомов с инверсной населенностью можно рассматривать как среду с отрицательным коэффициентом поглощения.

«испускательных» переходов, вероятность которых возрастала бы с увеличением интенсивности излучения, т. е. «испускатель-ных» переходов, вызываемых излучением. Возникающее в результате таких переходов излучение называется вынужденным или индуцированным. Исходя из термодинамических соображений, Эйнштейн доказал, что вероятность вынужденных переходов, сопровождающихся излучением, должна быть равна вероятности вынужденных переходов, сопровождающихся поглощением света. Таким образом, вынужденные переходы могут с равной вероятностью происходить как в одном, так и в другом направлении. Вынужденное излучение обладает весьма важными свойствами. Направление его распространения в точности совпадает с направлением распространения вынуждающего излучения, т. е. внешнего излучения, вызвавшего переход. То же самое относится к частоте, фазе и поляризации вынужденного и вынуждающего излучений. Следовательно, вынужденное и вынуждающее излучения оказываются строго когерентными. Эта особенность вынужденного излучения лежит в основе действия усилителей и генераторов света, называемых лазерами.



Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются

ядерными силами.

С помощью экспериментальных данных (рассеяние нуклонов на ядрах, ядерные превращения и т. д.) доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий. Перечислим основные свойства ядерных сил:

ядерные силы являются силами притяжения;

ядерные силы являются короткодействующими — их действие проявляется только на расстояниях примерно

10~15м.

ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине.

ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов.

ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов.

ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

покоя Rip = 1,6726- 10 КГ ЛМоЗбтг,

где

ш — масса электрона. Нейтрон (п) — нейтральная

частица с массой покоя

/и„= 1,6749- Ш~" кг»183Ут«.

Протоны

и нейтроны называются нуклонами (от лат.

nucleus — ядро). Общее число нуклонов в

атомном ядре называется массовым числом А.

Атомное ядро характеризуется зарядом Z S, где е

— заряд протона, Z — зарядовое число ядра,

равное числу прогонов в ядре и совпадающее с

порядковым номером химического элемента в

Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и

нейтральный атом: /X, где X — символ химического элемента, Z — атомный номер (число протонов в ядре), А —массовое число (число нуклонов в ядре).

Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. Ядра с одинаковыми Z, но разными А называются изотопами, а ядра с одинаковыми А, но разными Z—изобарами. Радиус ядра задается эмпирической формулой

к = R fj Л t

рубина. Переход 2-»-/ запрещен правилами отбора, поэтому длительность возбужденного состояния 2 атомов хрома порядка 10~3 с, т. е. примерно на четыре порядка больше, чем для состояния 3. Это приводит к «накоплению» атомов хрома на уровне 2. При достаточной мощности накачки их концентрация на уровне 2 будет гораздо больше, чем на уровне /, т. е. возникает среда с инверсной населенностью уровня 2.

Каждый фотон, случайно родившийся при спонтанных переходах, в принципе может инициировать (порождать) в активной среде множество вынужденных переходов 2-»-/, в результате чего появляется целая лавина вторичных фотонов, являющихся копиями первичных. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайный характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях.

Первым газовым лазером непрерывного действия (1961) был лазер на смеси атомов неона и гелия. Газы обладают узкими линиями поглощения, лампы же излучают свет в широком интервале длин волн; следовательно, применять их в качестве накачки невыгодно, так как используется только часть мощности лампы. Поэтому в газовых лазерах инверсная населенность уровней осуществляется электрическим разрядом, возбуждаемым газах.

№ 1.1.4.

Определить напряженность поля, создаваемого диполем сердца на направлении, перпендикулярном его оси на расстоянии r = 6 см от его центра. Дипольный момент сердца принять равным р = 2∙10-18 Кл∙м.

Решение

Напряженность поля, создаваемого электрическим диполем на направлении, перпендикулярном его оси на расстоянии r от его центра, определяется выражением

,

где р – дипольный момент, r – расстояние от центра диполя до рассматриваемой точки, ε0 = 8,85∙10-12 Ф/м – электрическая постоянная.

Подставляя численные значения, получим:

.


Дифракция ренгеновских лучей на пространственной решетке