Импульсные цепи Трансформаторы Электрические машины переменного тока Однофазный асинхронный двигатель Электронные приборы и устройства Тиристоры Электронные усилители и генераторы Логический элемен Трехфазные выпрямители

Решение задач по электротехнике и электронике

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ И ЦИФРОВЫЕ УСТРОЙСТВА

Логические элементы

Логический элемент – это электронная схема, которая имеет один или больше входов X, реализующая на каждом выходе соответствующую логическую функцию Y от входных переменных. Логические элементы являются важнейшей составной частью устройств цифровой (дискретной) обработки информации – цифровых измерительных приборов, устройств автоматики и ЭВМ. Логические элементы, как правило, выполняют на базе электронных устройств, работающих в ключевом режиме. В связи с этим цифровая информация представляется в виде логической переменной, принимающей всего два различных значения: логическая 1 – истинно и логический 0 – ложно.

Логические преобразования включают в себя три основные элементарные операции. Тип операции и соответствующий ей логический элемент, а также правила выполнения логических операций над двоичными переменными представлены в таблице 16.1.

Таблица 16.1

Тип элемента

Логическая

операция

Таблица

истинности

Условное
обозначение

ИЛИ

Логическое сложение (дизъюнкция)

   Y

 0 0 0

 0 1 1

  1 0 1

 1 1 1

И

Логическое умножение (конъюнкция)

   Y

 0 0 0

 0 1 0

  1 0 0

 1 1 1

НЕ

Логическое отрицание (инверсия)

 Х Y

 0 1

 1 0

Тип логических элементов определяется совокупностью схемных и технологических признаков, характеризующих интегральные микросхемы логических элементов. Простейшие логические элементы И и ИЛИ могут быть реализованы на основе диодных ключей. Элемент НЕ обычно представляет собой транзисторный ключ с инвертирующими свойствами. Кроме рассмотренных основных логических элементов, используют комбинированные логические элементы, реализующие две (или более) логические операции, например, элементы ИЛИ – НЕ, И – НЕ. Чтобы реализовать элемент И – НЕ, к диодному

Таблица 16.2

Тип логического элемента

Схема

Условное

обозначение

Диодная

логика

Резистивная

транзисторная

логика

(РТЛ)

Диодно-

транзисторная

логика

(ДТЛ)

Транзисторно-

транзисторная

логика

(ТТЛ)

Логика на
МДП-транзисторах с p- или n-каналом

(p-МДПТЛ)

(n-МДПТЛ)

Интегральная

инжекционная

логика

(И2Л)

ключу добавляют инвертор на транзисторе. Такая схема называется диодно-транзисторной логикой (ДТЛ), а логический элемент – ДТЛ – элементом И – НЕ. Использование различных элементов в схемах существенно расширяет ряд логических операций. Наиболее широко используемые схемы логических элементов представлены в таблице 16.2.


Наиболее сложные логические операции реализуют в виде комбинаторных или последовательных схем. Комбинаторные схемы (КС) собирают из отдельных ИМС логических элементов (малой степени интеграции) или изготавливают в виде ИМС среднего уровня интеграции. Они также могут входить в состав больших интегральных схем (БИС). На рис. 16.1 приведена комбина-

 а) б)

Рис. 16.1

ционная схема, реализующая логическую операцию «Исключительное ИЛИ» (неравнозначность), и ее условное обозначение.

Последовательная схема (конечный автомат) состоит из комбинационных схем и запоминающего устройства (ЗУ). Значения выходных сигналов таких схем определяется не только значением входных сигналов, но и состоянием запоминающего устройства в каждый момент времени.

Простейший конечный автомат – триггер (рис. 16.2), имеет один основной выход Q и один или несколько управляющих входов (R, S) и может иметь дополнительный (инверсионный) выход .

 Последовательная схема на основе триггеров, представляющая собой параллельный регистр (регистр памяти) и ее условные обозначения показаны на рис. 16.3.


 Интегральные микросхемы, на которых выполняются логические элементы, должны удовлетворять ряду требований: по быстродействию (интервал времени между сменой состояний входного и выходного сигналов); нагрузочной способности (число однотипных микросхем, подключенных к одному выходу); помехоустойчивости (допустимый уровень напряжения помехи, не вызывающий ложного срабатывания); мощности рассеяния (мощность, потребляемая от источника питания).

 

 

 

 

 

Генераторы синусоидальных колебаний Любой генератор состоит из усилителя и цепи положительной обратной связи.

Электронные коммутирующие элементы и устройства Электронные ключи Для выполнения различных коммутаций в устройствах автоматики и вычислительной техники, включения и выключения элементов, источников питания используют электронные ключи.

Коммутационные схемы В сложных устройствах автоматического управления процессами для контроля большого числа параметров и различных переключений наряду с электронными ключами используют более сложные устройства, называемые коммутационными схемами. Примером такой схемы является интегральная схема управления впрыском топлива и зажигания двигателей внутреннего сгорания автомобилей (СУВЗ).


Стабилизаторы