Курс начертательной геометрии

Машиностроительное черчение
Выполнение сечений
Правила выполнения технических чертежей
Виды аксонометpических пpоекций
Эскиз детали
Нанесение размеров на чертежах
Чтение сборочных чертежей
Основные способы проецирования
Сопротивление материалов
Сопромат задачи
Сопротивление материалов примеры
Кинематика примеры решения задач
Статика примеры решения задач
Физика, электротехника
Электротехника
Электромагнетизм
Расчет режимов трехфазных цепей
Расчет электрических цепей постоянного и переменного тока
Методы расчета электрических цепей
Примеры  решения типовых задач по электротехнике
Физика оптика Курс лекций
Примеры решения задач по классической физике
Примеры решения задач контрольной работы по физике
Физика решение задач
Молекулярная физика и термодинамика
Курс лекций по атомной физике
Ядерная модель атома
Квантовая механика
Рентгеновские спектры
Первый газовый лазер
Металлы, диэлектрики и полупроводники по зонной теории.
Полупроводниковые диоды и триоды (транзисторы)
Радиоактивное излучение и его виды
Ядерные реакция

Понятие о ядерной энергетике

Информатика
Лекции Java
Язык JavaScript
Интернет
Язык PHP
Архитектура ПК
Высшая математика
Вычисление интегралов и рядов
Примеры вычисления интеграла
Примеры выполнения контрольной работы по математике
комплексные числа
Последовательности
Предел функции
Непрерывные функции
Дифференциальное исчисление
Формула Тейлора
Определенныеинтегралы
Двойной интеграл
Тройные интеграл
Криволинейные интегралы
Элементы теории поля
Интегралы от параметра
Элементы тензорного
исчисления
Примеры решения задач
Теория множеств
Построения графика функции
Элементарная математика
Интегралы
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Интегральное исчисление
Дифферинциальные урав.
Элементарная математика
Математический анализ
Мат. анализа часть 3
Комплексные числа
 

ЛЕКЦИЯ № 1

Основной курс начертательной геометрии – это курс метрических задач, теории теней и перспективы, - проекции с числовыми отметками. Н.Г. –наука молодая. Основана 200 лет назад Гаспаром Монж.

ЛЕКЦИЯ № 2

Прямая линия. Задание прямой линии. Проекции прямой. Положение прямой в пространстве определяется положением двух ее точек, так как через две точки можно провести только одну прямую. Это верно, но не полно, кроме двух точек положение прямой в пространстве можно определить двумя плоскостями, двумя проекциями, точкой и углами наклона к плоскостям проекций. Проекцией прямой на плоскости проекций является прямая.

ЛЕКЦИЯ № 3

Плоскость. Положение плоскости в пространстве определяется положениями задающих ее элементов

ЛЕКЦИЯ № 4

Взаимное положение двух плоскостей, прямой и плоскости. Две плоскости в пространстве могут быть параллельны или пересекаться между собой.

ЛЕКЦИЯ № 5

Способы преобразования чертежа. Решение задач позиционного и главным образом метрического характера значительно облегчается когда данные элементы располагаются на прямых или на плоскостях частного положения.

ЛЕКЦИЯ № 6

Кривые линии. Плоские кривые. Пространственные кривые. Поверхности вращения. Линейчатые поверхности. Винтовые поверхности. Любая кривая линия может рассматривается как траектория движения какой-либо точки.

ЛЕКЦИЯ № 7

Гранные поверхности Многогранник – это конечная часть пространства, ограниченная отсеками пересекающихся плоскостей.

ЛЕКЦИЯ № 8

Взаимное пересечение двух поверхностей Линия пересечения двух поверхностей – геометрическое место точек, принадлежащих одновременно обеим поверхностям.

ОСНОВЫ ТЕОРИИ ПОСТРОЕНИЯ ЧЕРТЕЖА Реальный предмет (деталь или сборочная единица) имеет трехмерную форму, которую необходимо передать на листе, имеющем лишь два измерения. Сделать это можно, зная законы построения изображений. Правила построения изображений в начертательной геометрии основываются на методе проецирования. Изображение предмета на плоскости (его проекция) строится с помощью проецирующих лучей.

ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ Комплексный чертеж точки (Эпюр Монжа)

Проецирование прямой

Существует три вида проецирующих прямых: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая прямая.

Натуральная величина отрезка прямой общего положения. Метод прямоугольного треугольника В отличие от отрезков прямых частного положения, проецирующихся хотя бы на одну из плоскостей проекций в натуральную величину, отрезок прямой общего положения на плоскости проекций проецируется с искажением. Для того чтобы найти его натуральную величину, необходимо провести ряд преобразований.

Плоскость. Способы ее задания, положение относительно плоскостей проекций

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ТОЧКИ, ПРЯМЫХ И ПЛОСКОСТЕЙ Взаимное расположение точки и прямой

Принадлежность прямой и точки плоскости Возможны два случая расположения точки относительно плоскости: точка может принадлежать плоскости или не принадлежать ей

Взаимное расположение плоскостей Плоскости по отношению друг к другу могут занимать два положения: быть параллельными или пересекаться.

Взаимное расположение прямой и плоскости Для прямой и плоскости возможны три случая их взаимного расположения: прямая линия может принадлежать плоскости; быть параллельна плоскости; пересекаться с ней.

ПЕРПЕНДИКУЛЯРНОСТЬ ГЕОМЕТРИЧЕКСКИХ ОБЪЕКТОВ Проецирование прямого угла В общем случае плоский угол проецируется на плоскость проекций с искажением.

Перпендикулярность прямой и плоскости Из курса элементарной геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. Но, исходя из теоремы о проецировании прямого угла, перпендикуляр, проведенный к прямым общего положения, на КЧ проецируется с искажением. Поэтому применительно к начертательной геометрии признак перпендикулярности прямой и плоскости формулируется следующим образом.

ПРЕОБРАЗОВАНИЕ ИЗОБРАЖЕНИЙ. ЧЕТЫРЕ ОСНОВНЫЕ ЗАДАЧИ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Для упрощения решения метрических, а также некоторых позиционных задач могут применяться методы, позволяющие переходить от задания фигур общих положений к частным.

2 основная задача. С помощью преобразования прямой уровня в проецирующую прямую можно найти:

расстояние между точкой и прямой;

расстояние между параллельными или скрещивающимися прямыми и т.п.

Вращение вокруг проецирующих прямых Этот метод, как и метод вращения вокруг линии уровня, предполагает неизменность системы плоскостей проекций, в которой вокруг проецирующей оси вращается геометрический объект – точка, прямая или плоская фигура. При этом все точки, принадлежащие геометрическому объекту, вращаются в параллельных плоскостях, расположенных перпендикулярно оси вращения.

Поверхность – абстрактная фигура, не имеющая толщины. Она ограничивает какое-либо тело, состоящее из металла, пластмассы и т.д. Тело конечно, а поверхность может быть бесконечна. Например, шар ограничен сферой; боковой поверхностью конуса является коническая поверхность.

Многогранники. Точка и прямая на поверхности Гранные поверхности имеют прямую образующую и ломаную линию в качестве направляющей.

Пересечение поверхности многогранника плоскостью Плоская фигура, получаемая в результате пересечения какой-либо поверхности плоскостью, называется сечением.

Пересечение поверхности вращения плоскостью Форма сечения поверхности вращения плоскостью зависит от угла наклона секущей плоскости к оси вращения поверхности.

Пересечение поверхностей Пересечение многогранников Многогранники пересекаются по замкнутым пространственным ломаным линиям, которые могут быть найдены следующим образом:

Способ ребер. Находятся точки пересечения ребер одного многогранника с гранями другого.

Способ граней. Определяются отрезки прямых, по которым грани одного многогранника пересекаются с гранями другого.

Пересечение поверхностей вращения Линией пересечения поверхностей является плоская или пространственная кривая, состоящая из: одного замкнутого контура, если одно геометрическое тело частично врезается в поверхность другого; распадается на несколько линий, если поверхность одного тела полностью пронизывает поверхность другого.

АКСОНОМЕТРИЧЕСКИЕ ИЗОБРАЖЕНИЯ

При разработке проектно-конструкторской документации, наряду с ортогональными проекциями, применяются аксонометрические. Эти изображения, с одной стороны, пространственно наглядны, с другой – дают возможность измерений. Сущность аксонометрического проецирования заключается в том, что геометрический объект, ориентированный определенным образом относительно ортогональной системы плоскостей проекций, проецируется вместе с осями проекций на новую плоскость, называемую аксонометрической или картинной. В результате этого проецирования получается одна аксонометрическая проекция (аксонометрия).

Коэффициенты искажений прямоугольной аксонометрии

Высшая математика Лекции, конспекты, курсовые, примеры решения задач