Рациональные формы поперечных сечений при изгибе Расчет сварных соединений Совместное действие изгиба и растяжения или сжатия. Расчет балок переменного сечения. Теорема Кастильяно. Способ сравнения деформаций

Сопромат курс лекций Примеры, задачи

Совместное действие изгиба и растяжения или сжатия.

Изгиб балки при действии продольных и поперечных сил.

На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.

Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.



Рис.1. Совместное действие изгиба и сжатия.

Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.

Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.

Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений: Качественный кинематический анализ. Заключается в проведении анализа на геометрическую неизменяемость ЗРС, которая обеспечивается наличием шарнирно-стержневого треугольника (ШСТ), образованного опорными связями, наложенными на диск (рис. 7).

нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой

Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно

На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.

Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и . Для составления условия прочности найдем наибольшее нормальное напряжение.



Рис.2. Сложение напряжений сжатия и изгиба

Необходимо отметить, что наиболее простым и надежным видом соединения является соединение встык, образуемое путем заполнения зазора между торцами соединяемых элементов наплавленным металлом.

Иногда соединение листов производится внахлестку или встык с перекрытием накладками.

Условие прочности для двух симметрично расположенных швов имеет вид: .

Косой изгиб призматического стержня Вид деформации является сложным, когда в поперечном сечении стержня возникают два и более силовых факторов.

Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу.

Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба.

Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у.

Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована.

Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности.

Ядро сечения при внецентренном сжатии При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси .

Для получения очертания ядра целиком изобразим положения нейтральной оси и , соответствующие граничным точкам 1 и 2.

Коэффициенты , и зависят от отношения сторон , и их значения приведены в табл. 4.1.

Таблица 4.1. Значения коэффициентов для прямоугольных сечений

1,0

0,208

0,140

1,0

1,2

0,219

0,166

-

1,4

0,228

0,187

0,865

1,6

0,234

0,204

0,845

1,8

0,240

0,217

-

2,0

0,246

0,229

0,796

2,5

0,258

0,249

-

3,0

0,267

0,263

0,753

4,0

0,282

0,281

0,745

6,0

0,299

0,299

0,743

8,0

0,307

0,307

0,743

10,0

0,313

0,313

0,743

Более 10

0,333

0,333

0,743

 

Значения , и для различных сечений приведены в табл.4.2.

Таблица 4.2. Геометрические характеристики жесткости и прочности для

некоторых сечений при кручении прямого бруса


Сопромат Расчет балок переменного сечения