Рациональные формы поперечных сечений при изгибе Расчет сварных соединений Совместное действие изгиба и растяжения или сжатия. Расчет балок переменного сечения. Теорема Кастильяно. Способ сравнения деформаций

Сопромат курс лекций Примеры, задачи

Рациональные формы поперечных сечений при изгибе

Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .

Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 9, а), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 9, б), у которого возможно большая часть материала сосредоточена на полках (горизонтальных массивных листах), соединенных стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 9, в). Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.



Рис.9. Распределение нормальных напряжений в симметричных сечениях

Квадратная стальная пластинка (Е = 2.0×105 МПа, n = 0.25), размерами 200´200 мм нагружена по торцам напряжениями s1 = 200 МПа и s2 = 200 МПа. Определить изменения длин сторон квадрата, его площади и объема пластинки при ее упругой деформации. Трением пренебречь.

Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 10):

которое вытекает из требования



Рис.10. Распределение напряжений несимметричного профиля сечения балки.



а) двутавр, б ) швеллер, в) неравнобокий уголок, г) равнобокий уголок
Рис.11. Используемые профили сечений:

Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 11: а—двутавр, б— швеллер, в — неравнобокий уголок, г—равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др. Употребляются также холодногнутые замкнутые сварные профили (рис. 12).



Рис.12. Замкнутые сварные профили

Поскольку по соображениям технологии сортамент стандартных профилей по размерам ограничен (например, наибольший прокатный двутавр согласно ГОСТ 8239—72 имеет высоту 550 мм), то для больших пролетов приходится применять составные (сварные или клепаные) балки.

Прямой чистый изгиб стержня При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент Мх (рис. 1).

Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу.

Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной).

При расчете балок из хрупких материалов следует различать наибольшие растягивающие max и наибольшие сжимающие напряжения (рис. 6.), которые также определяются по модулю непосредственно и сравниваются с допускаемыми напряжениями на растяжение и сжатие .

Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений).

Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где —статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе.

Общий случай НДС. Обобщённый закон Гука-Коши

Рассмотрим далее общий случай объёмного напряжённо-деформированного состояния (рис. 3.10).

Рис. 3.10

Его можно разложить на сумму двух состояний – трёхосное растяжение и сложный сдвиг в трёх координатных плоскостях. На основании принципа независимости действия сил (напряжений), используя (19) и , , получаем:

(20)

Уравнения (20) можно разрешить относительно напряжений:

(21)

где

(22)

Коэффициент называют модулем Коши – Ламе.


Сопромат Расчет балок переменного сечения