Рациональные формы поперечных сечений при изгибе Расчет сварных соединений Совместное действие изгиба и растяжения или сжатия. Расчет балок переменного сечения. Теорема Кастильяно. Способ сравнения деформаций

Сопромат курс лекций Примеры, задачи

Наибольшее и наименьшее значения центральных моментов инерции.

Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей.

Найдем теперь крайние значения (максимум и минимум) для центральных моментов инерции. Возьмем ось , и начнем ее вращать, т. е. менять угол ; при этом будет изменяться величина

Наибольшее и наименьшее значения этого момента инерции соответствуют углу , при котором производная обращается в нуль. Эта производная равна:

Испытание на кручение образцов из различных материалов

Подставляя в написанное выражение и приравнивая его нулю, получаем:

отсюда

Таким образом, осями с наибольшим и наименьшим центральными моментами инерции будут главные центральные оси. Так как при повороте центральных осей сумма соответствующих моментов инерции не меняется, то

Когда один из центральных моментов инерции достигает наибольшего значения, другой оказывается минимальным, т, е. если

то

Следовательно, главные центральные оси инерции — это такие взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции обращается в нуль, а осевые моменты инерции имеют наибольшее и наименьшее значения.

Расчет гибких нитей.   В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес.

Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз.

Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (1) значения и , находим и : .

Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н, то легко получить значения расстояний а и b и стрел провисания, и .

В случае, если при переходе от первого ко второму состоянию нагрузка не изменяется, а изменяется лишь температура, то в последнем уравнении интенсивность заменяется на .

Зависимость между моментами инерции при повороте осей. Центральных осей можно провести сколько угодно.

Заметим, что при этом вычислении сложные фигуры надо разбивать а такие элементарные части, для которых по возможности известны величины центральных моментов инерции относительно системы взаимно перпендикулярных осей.

Главные оси инерции и главные моменты инерции.

Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить .

Найти моменты инерции прямоугольника (Рис.3) относительно осей и и центробежный момент его относительно тех же осей.

Площадь является простейшей геометрической характеристикой сечения, имеет размерность L2. Отметим два важных свойства: площадь всегда положительна и не зависит от выбора системы координат.

Для сечений, составленных из профилей стандартного проката, площадь каждого профиля и остальные необходимые для расчетов размеры принимаются по таблицам ГОСТов на прокатную сталь.

При расчетах на изгиб, кручение, сложное сопротивление и устойчивость используются более сложные геометрические характеристики: статические моменты, моменты инерции сечений, которые зависят не только от формы и размеров сечений, но также от положения осей и точек (полюсов), относительно которых они вычисляются.

Статические моменты сечения

Статическим моментом плоского сечения относительно некоторой оси называется, взятая по всей его площади А, сумма произведений площадей элементарных площадок dA на их расстояния от этой оси (рис. 4.1):

; (3)

(4)

(5)

где yc – расстояние от центра тяжести всего плоского сечения до оси x; xc – расстояние от центра тяжести всего сечения до оси y.

Статический момент сложного сечения относительно некоторой оси равен сумме статических моментов всех частей этого сечения относительно той же оси:

(6)

В формулах (6) введены обозначения: А1, А2, …, Аn – площади простых элементов, составляющих плоское сложное сечение; x1, y1, x2, y2, x3, y3, … , xn, yn – координаты центров тяжести простых составляющих сложного плоского сечения относительно выбранных осей х и у.

Из выражений (4) можно определить координаты центра тяжести плоского сечения:

(7)

Для сложного поперечного сечения формулы (7) можно представить в следующем виде

(8)

Зависимости между статическими моментами одного и того же сечения относительно двух параллельных друг другу осей х и х1, а также у и у1 имеют вид:

(9)

где параметры a, b показаны на рис. 4.2.

image002

Рис.4.2

У к а з а н и я.

1. Изменение положительного направления оси у вызывает изменение знака статического момента Sx. Аналогично, изменение положительного направления оси х вызывает изменение знака статического момента Sy.

2. Статический момент сечения равен нулю относительно любой оси, проходящей через центр тяжести этого сечения.

3. Если плоское сечение имеет ось симметрии, то эта ось всегда проходит через центр тяжести плоского сечения, а поэтому, согласно п.2, статический момент сечения относительно оси симметрии всегда равен нулю.

4. Если плоское сечение имеет две оси симметрии, то центр тяжести сечения лежит на пересечении этих осей симметрии.


Сопромат Расчет балок переменного сечения