Эпюры внутренних усилий при кручении Влияние различных факторов на механические характеристики материалов Наибольшее и наименьшее значения центральных моментов инерции Рациональные формы поперечных сечений при изгибе

Сопромат курс лекций Примеры, задачи

Диск равного сопротивления.

Получено, что, изменение напряжений и вдоль радиуса диска постоянной толщины весьма значительно. Наиболее неравномерное распределение напряжений имеет место в дисках постоянной толщины с отверстием в центре. При расчете подобных дисков приходится ориентироваться на наибольшее напряжение у внутреннего края диска, что сильно ограничивает возможность повышения предельных скоростей. Для достижения высоких скоростей вращения диски приходится делать с переменной толщиной, уменьшающейся от центра к окружности диска. Наиболее выгодным является такой профиль диска, в котором напряжения во всех точках диска сохраняют постоянное значение. Подобные диски называются дисками равного сопротивления. При расчете этих дисков исходят из предположения, что по толщине диска напряжения не меняются, что обычно влечет за собой небольшие погрешности в величинах напряжений.

Основные формулы для расчета дисков переменной толщины по прежнему могут быть выведены из рассмотрения условий равновесия элемента диска abcd.



Рис.2. Равновесие элемента диска равного сопротивления.

Переменную толщину диска, являющуюся некоторой функцией радиуса r, обозначим через z. На элемент abcd по меридиональным сечениям ad и bc действуют две силы , составляющие между собой угол ; по грани dc на этот элемент действует радиальное усилие , направленное к центру диска, а по грани ab — радиальное усилие , направленное от центра к наружной поверхности диска. К этим усилиям должна быть присоединена еще и сила инерции массы элемента

направленная от центра к окружности диска.

Проектируя все перечисленные выше усилия на направление радиуса, получаем такое дифференциальное уравнение равновесия диска переменной толщины:

или

При z = const, это уравнение обращается в известное для диска постоянной толщины.

В случае диска равного сопротивления напряжения и всюду постоянны и равны между собой. Приравнивая их величине допускаемого напряжения [], можем так переписать уравнение равновесия:

или

где

Интегрируя это уравнение, находим:

где С — постоянная интегрирования. Если диск не имеет отверстия в центре, то из условия, что при r = 0 z = z0, следует: С = z0. Толщина диска в центре (z0) определяется из условий на контуре диска.

Сплошной диск равного сопротивления может быть применен даже при очень высоких окружных скоростях. Однако по конструктивным соображениям на практике обычно применяются диски переменной толщины с отверстием в центре, профиль которых, близкий к профилю диска равного сопротивления, обеспечивает наиболее выгодное распределение напряжений вдоль радиуса. Методы расчета таких дисков рассматриваются в специальных курсах.

Построенная эпюра условна, так как она дает верные значения касательных напряжений только для точек стенки, достаточно удаленных от полок. Вблизи полок касательные напряжения в стенке возрастают, ввиду того, что место сопряжения полки со стенкой является источником концентрации касательных напряжений. В полках же, где отношение высоты к ширине много меньше единицы, возникают касательные напряжения, перпендикулярные направлению Q, и величина их меняется по ширине сечения.

Необходимо отметить также, что формулой Журавского можно пользоваться только в случае прямого изгиба.

При изгибе тонкостенных профилей касательные напряжения определяются по следующей формуле:

где - толщина тонкостенного профиля.

На рис. 6.31 построена эпюра при изгибе тонкостенного двутавра в вертикальной плоскости симметрии. Вследствие симметрии сечения и нагрузки, касательные напряжения в симметричных точках полок двутавра должны быть также симметричны относительно оси y и будут увеличиваться от края к центру по линейному закону:

.

Вдоль стенки τ изменяются по параболическому закону

и направлены в ту же сторону, что и сила Q.

Рис. 6.31

Рис. 6.32

При изгибе двутавра в плоскости второй оси (рис. 6.32) касательные напряжения в стенке равны нулю, а вдоль каждой из полок изменяются по параболическому закону

.


Способ сравнения деформаций Сопромат