Способ сравнения деформаций. Положение жесткого бруса в пространстве Напряжения в сферических толстостенных сосудах. Прочность при циклически изменяющихся напряжениях

Сопромат курс лекций Примеры, задачи

Для диска с центральным отверстием напряжение должно быть равно нулю как при, так и при (рис.1). Эти условия на контуре при подстановке их в формулу (4) приводят к уравнениям:

и

откуда

и

Подставляя значения А и В в формулы (35.7) и (35.8), получаем:

Полагая для краткости можем написать:

и

можем написать:

Замечаем, что напряжение обращается в нуль при и , т. е. на внутреннем и наружном контурах диска; при значениях между 1 и напряжение положительно и, как нетрудно убедиться, достигает наибольшей величины при При этом

(6)

Напряжение при всех значениях также положительно и наибольшей величины достигает у внутреннего края диска, где :

(7)

Сравнивая выражения (6) и (7), убеждаемся, что всегда больше Поэтому при проверке прочности диска как по теории наибольших касательных напряжений, так и по энергетической теории условие прочности должно быть написано в таком виде:

Пример.

Построить эпюру распределения касательных напряжений для балки двутаврового (№ 12) сечения (рис. 6.30), если Q=10 кН.

Рис. 6.30

Для построения эпюры схематизируем действительное сечение, представив его в виде трех прямоугольников, как показано на рис. 6.30 пунктиром. Проведя произвольную линию mn, параллельную нулевой линии, и перемещая ее вдоль оси y, обнаруживаем, что при этом напряжения в точках этой линии меняются по параболическому закону, так как мы имеем дело с прямоугольниками. Для построения эпюры касательных напряжений вычислим τ в крайних волокнах (линия AB), в месте сопряжения полки со стенкой (точки 1 и 2, причем будем считать, что они расположены бесконечно близко к границам полки, но лежат по разные стороны от этой границы) и в точках нейтральной линии.

На рис. 6.30 все размеры даны в мм, а напряжения – в МПа.

Для точек линии AB ширина сечения равна l, а статический момент равен нулю, так как линия AB не отсекает никакой площади. Таким в точках линии AB касательные напряжения равны нулю.

Для точки 1 статический момент равен

Момент инерции сечения относительно нейтральной оси находим по сортаменту Iz=403 см4. Касательное напряжение в точке 1:

Для точки 2 статический момент (с точностью до бесконечно малых величин) остается таким же, но ширина сечения d=0,5 см. Поэтому касательное напряжение в точке 2

Для точек

Следовательно, при переходе от точки 1 к точке 2 касательное напряжение возрастает в 15 раз и на эпюре получается скачок.

Для точек нейтральной линии ширина сечения d=0,5 см, а статический момент следует взять для половины сечения из сортамента Szmax=38,5 см3. Поэтому

На основании этих данных строим эпюру касательных напряжений для нижней половины сечения. Для верхней половины сечения в силу симметрии профиля относительно оси z эпюра будет симметричной.


Способ сравнения деформаций Сопромат