Способ сравнения деформаций. Положение жесткого бруса в пространстве Напряжения в сферических толстостенных сосудах. Прочность при циклически изменяющихся напряжениях

Сопромат курс лекций Примеры, задачи

Для тонкостенных резервуаров, имеющих форму поверхностей вращения и находящихся под внутренним давлением р, распределенным симметрично относительно оси вращения, можно вывести общую формулу для вычисления напряжений.

Выделим (Рис.1) из рассматриваемого резервуара элемент двумя смежными меридиональными сечениями и двумя сечениями, нормальными к меридиану.



Рис.1. Фрагмент тонкостенного резервуара и его напряженное состояние.

Размеры элемента по меридиану и по перпендикулярному к нему направлению обозначим соответственно и , радиусы кривизны меридиана и перпендикулярного к нему сечения обозначим и , толщину стенки назовем t.

По симметрии по граням выделенного элемента будут действовать только нормальные напряжения в меридиальном направления и в направлении, перпендикулярном к меридиану. Соответствующие усилия, приложенные к граням элемента, будут и . Так как тонкая оболочка сопротивляется только растяжению, подобно гибкой нити, то эти усилия будут направлены по касательной к меридиану и к сечению, нормальному к меридиану.

Усилия (Рис.2) дадут в нормальном к поверхности элемента направлении равнодействующую ab, равную



Рис.2. Равновесие элемента тонкостенного резервуара

Подобным же образом усилия дадут в том же направлении равнодействующую Сумма этих усилий уравновешивает нормальное давление, приложенное к элементу

Отсюда

Это основное уравнение, связывающее напряжения и для тонкостенных сосудов вращения, дано Лапласом.

Так как мы задались распределением (равномерным) напряжений по толщине стенки, то задача статически определима; второе уравнение равновесия получится, если мы рассмотрим равновесие нижней, отрезанной каким-либо параллельным кругом, части резервуара.

Формула для кривизны балки

для положительных значений . В нашем примере на рис. 6.41 изгибающий момент . Поэтому эту формулу мы должны использовать в виде:

(25)

Приравнивая (24), (25), получаем точное дифференциальное уравнение изогнутой оси балки:

(26)

Если прогибы балки малы по сравнению с ее линейными размерами, то и углы поворота сечений - малые величины и, согласно (21)-(24), можно считать:

, ,

Тогда дифференциальное уравнение (26) упрощается и принимает вид

(27)

Уравнение (27) носит название приближенного дифференциального уравнения изогнутой оси упругой балки. Оно получено для случая чистого изгиба, но может быть использовано и при поперечном, когда момент является функцией .

Интегрируя (27), получаем:

(28)

Произвольные постоянные C1, С2 в (28) имеют простой геометрический смысл. Обозначим через прогиб и угол поворота cечения соответственно в начале координат при . Тогда при из (10) получаем:

Величиныназывают начальными параметрами задачи по определению перемещений в балках.

Соотношения (28) запишем в виде

(29)

Так как

то решение (29) можно записать в виде:


Способ сравнения деформаций Сопромат