Способ сравнения деформаций. Положение жесткого бруса в пространстве Напряжения в сферических толстостенных сосудах. Прочность при циклически изменяющихся напряжениях

Сопромат курс лекций Примеры, задачи

Напряжения в сферических толстостенных сосудах.

На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный ; напряжения, действующие на этот элемент, изображены на чертеже.



Рис.6. фрагмент сферического толстостенного сосуда.

Составляя уравнения равновесия и совместности, получаем для и значения:

Постоянные А и В могут быть определены из условий на внутренней и внешней поверхностях сосуда при

и

соответственно, где и — наружный и внутренний радиусы.

Так, при действии внешнего и внутреннего давлений А и В определяются из условий:

на внутренней поверхности,

на внешней поверхности

Отсюда

Тогда

Лекция № 40. Расчет тонкостенных сосудов и резервуаров.

Если толщина стенок цилиндра мала по сравнению с радиусами и , то известное выражение для тангенцальных напряжений приобретает вид

т. е. величину, определенную нами раньше (§ 34).

В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут.

Метод сил. Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил.

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы.

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор.

Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ.

Расчет толстостенных цилиндров. В тонкостенных цилиндрических резервуарах, подвергнутых внутреннему давлению, вполне возможно при вычислениях считать напряжения равномерно распределенными по толщине стенки.

Условие равновесия дало только одно уравнение для нахождения двух неизвестных напряжений.

Постоянные А и В определятся из условий на внутренней и наружной поверхностях цилиндра: (8) .

Полное исчерпание грузоподъемности произойдет тогда, когда кольцевая пластическая зона, распространяясь от внутренней поверхности цилиндра, дойдет до наружной; состояние разрушения наступит тогда, когда материал у наружной поверхности достигнет состояния, при котором произойдет разрыв.

Горизонтальное перемещение w произвольной точки D поперечного сечения на расстоянии от оси балки равно:

(20)

Из треугольника А'В'В" следует, что первая производная от функции прогиба :

(21)

равна тангенсу угла наклона касательной к изогнутой оси балки в точке А с координатой . Из этого же треугольника получаем

(22)

Из рис. 6.41,б находим где - радиус кривизны дуги . Следовательно, кривизна изогнутой оси в точке А равна:

(23)

Дифференцируя (21) по и учитывая (19), (22), (23), получаем:

откуда

(24)


Способ сравнения деформаций Сопромат