Кривые и поверхности Линейные пространства уравнения

 

Кривые второго порядка

Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

Окружность

Эллипс

Определение 12.3   Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, назывемых фокусами эллипса, есть величина постоянная.       

Предложение Эллипс обладает двумя взаимно перпендикулярными осями симметрии, на одной из которых находятся его фокусы, и центром симметрии. Если эллипс задан каноническим уравнением (12.4), то его осями симметрии служат оси $ Ox$ и $ Oy$ , начало координат -- центр симметрии.

Гипербола

Парабола

Пример   Постройте параболу $ y^2=3x$ . Найдите ее фокус и директрису.

Параллельный перенос системы координат

 Пример   Нарисуйте кривую $ {x^2+9y^2-4x+18y+4=0}$ и найдите ее фокусы.

Пример   Постройте кривую $\displaystyle x+1+\sqrt{2-2y^2+4y}=0.$

Поверхности второго порядка

Линейные пространства уравнения

Системы линейных уравнений

Алгебраические структуры

Многомерные пространства

Линейные преобразования

Математика Лекции, конспекты, курсовые, примеры решения задач