Векторная алгебра Линия и плоскость в пространстве

Машиностроительное черчение
Выполнение сечений
Правила выполнения технических чертежей
Виды аксонометpических пpоекций
Эскиз детали
Нанесение размеров на чертежах
Чтение сборочных чертежей
Основные способы проецирования
Сопротивление материалов
Сопромат задачи
Сопротивление материалов примеры
Кинематика примеры решения задач
Статика примеры решения задач
Физика, электротехника
Электротехника
Электромагнетизм
Расчет режимов трехфазных цепей
Расчет электрических цепей постоянного и переменного тока
Методы расчета электрических цепей
Примеры  решения типовых задач по электротехнике
Физика оптика Курс лекций
Примеры решения задач по классической физике
Примеры решения задач контрольной работы по физике
Физика решение задач
Молекулярная физика и термодинамика
Курс лекций по атомной физике
Ядерная модель атома
Квантовая механика
Рентгеновские спектры
Первый газовый лазер
Металлы, диэлектрики и полупроводники по зонной теории.
Полупроводниковые диоды и триоды (транзисторы)
Радиоактивное излучение и его виды
Ядерные реакция

Понятие о ядерной энергетике

Информатика
Лекции Java
Язык JavaScript
Интернет
Язык PHP
Архитектура ПК
Высшая математика
Вычисление интегралов и рядов
Примеры вычисления интеграла
Примеры выполнения контрольной работы по математике
комплексные числа
Последовательности
Предел функции
Непрерывные функции
Дифференциальное исчисление
Формула Тейлора
Определенныеинтегралы
Двойной интеграл
Тройные интеграл
Криволинейные интегралы
Элементы теории поля
Интегралы от параметра
Элементы тензорного
исчисления
Примеры решения задач
Теория множеств
Построения графика функции
Элементарная математика
Интегралы
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Интегральное исчисление
Дифферинциальные урав.
Элементарная математика
Математический анализ
Мат. анализа часть 3
Комплексные числа
 

 

Определение вектора

Операции над векторами

В этом разделе мы вспомним известные из школьного курса математики операции сложения векторов и умножения вектора на число, а также свойства этих операций.

Определение Суммой векторов a и b называется такой третий вектор c, что при совмещенных началах этих трех векторов, векторы a и b служат сторонами параллелограмма, а вектор c-- его диагональю

Теорема Для любых векторов $ {\bf a},{\bf b},{\bf c}$ и любых вещественных чисел $ {\alpha},{\beta}$ выполняются следующие свойства: $ {\bf a}+{\bf b}={\bf b}+{\bf a}$ (свойство коммутативности операции сложения);

Разложение вектора по базису

Рассмотрим пример на нахождение координат вектора

Линейная зависимость векторов

Определить радиус и интервал сходимости степенного ряда .

Предложение Если система векторов содержит линейно зависимую подсистему, то вся система линейно зависима

Система координат и координаты вектора

Рассмотрим случай трехмерного пространства (на плоскости все построения аналогичны). Фиксируем некоторую точку $ O$ и возьмем произвольную точку $ M$ . Радиус-вектором точки $ M$ по отношению к точке $ O$ называется вектор $ \overrightarrow {OM}$ .

Если в пространстве выбран базис, то вектор $ \overrightarrow {OM}$ раскладывается по этому базису. Таким образом точке $ M$ можно сопоставить упорядоченную тройку чисел -- координаты ее радиус-вектора.

Проекции вектора

Проекция на ось суммы векторов равна сумме их проекций

Скалярное произведение

Теорема   Если векторы в ортонормированном базисе заданы своими координатами $ {{\bf a}=({\alpha}_1,
{\alpha}_2,{\alpha}_3)}$ , $ {{\bf b}=({\beta}_1,{\beta}_2,{\beta}_3})$ , то $\displaystyle {\bf a}{\bf b}={\alpha}_1{\beta}_1+{\alpha}_2{\beta}_2+{\alpha}_3{\beta}_3.$

Векторное произведение

Выражение векторного произведения через координаты сомножителей

Смешанное произведение

Определение Смешанным произведением векторов a,b,c называется число $ {\bf a}\cdot({\bf b}\times {\bf c})$ .

Смешанное произведение будем обозначать abc.

Смешанное произведение линейно по каждому аргументу

Нахождение координат вектора в произвольном базисе

Пусть в правом ортонормированном базисе заданы векторы $ {{\bf a}=({\alpha}_1,
{\alpha}_2,{\alpha}_3)}$ , $ {{\bf b}=({\beta}_1,{\beta}_2,{\beta}_3)}$ , $ {{\bf c}=({\gamma}_1,{\gamma}_2,{\gamma}_3)}$ , $ {{\bf d}=({\delta}_1,{\delta}_2,{\delta}_3)}$ . Цель данного раздела-- научиться определять, образуют ли векторы a,b,c базис, и, в случае положительного ответа на этот вопрос, научиться находить координаты вектора d в базисе a,b,c.

Линия и плоскость в пространстве

Уравнение поверхности

Определение Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Уравнение плоскости

Пусть в трехмерном пространстве задана декартова прямоугольная система координат. Попробуем установить, какой вид может иметь уравнение плоскости. Для этого заметим, что все плоскости, перпендикулярные одной прямой, параллельны друг другу.

Определение Любая прямая, перпендикулярная плоскости, называется нормалью к плоскости, а любой ненулевой вектор на такой прямой мы будем называть нормальным вектором плоскости.

Теорема Всякое уравнение(11.3), в котором $ \vert A\vert+\vert B\vert+\vert C\vert\ne0$ , является уравнением плоскости, ортогональной вектору $ {\bf n}=(A,B,C)$ .

Изображение плоскости

Все коэффициенты и свободный член в уравнении отличны от нуля

В этом случае находим точки пересечения плоскости с осями координат.

Коэффициенты при неизвестных отличны от нуля, а свободный член равен нулю

В этом случае плоскость проходит через начало координат $ O(0;0;0)$ и других точек пересечения с осями нет.

Один из коэффициентов при неизвестных равен нулю

Один из коэффициентов при неизвестных равен нулю В этом случае плоскость параллельна оси того переменного, которое в явном виде отсутствует в уравнении плоскости (коэффициент перед этим переменным равен нулю).

Два коэффициента при переменных равны нулю

Угол между плоскостями

Расстояние от точки до плоскости

Прямая на плоскости

Прямая в пространстве

Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой прнадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений.

Замечание Если в качестве параметра $ t$ взять время, то точка $ M$ будет двигаться по прямой со скоростью $ \vert{\bf p}\vert$ , причем в момент времент $ {t=0}$ ее положение совпадает с точкой $ M_0$ . Вектор скорости точки совпадает с вектором p.

Основные задачи на прямую и плоскость

Довольно часто встает следующая задача. Требуется от общих уравнений прямой перейти к параметрическим, которые в некотором смысле являются более удобными. Рассмотрим, как решить такую задачу.

Для того, чтобы написать параметрические уравнения прямой нужно знать координаты какой-нибудь точки на прямой и координаты направляющего вектора.

Пример Найдите точку пересечения прямой $ \frac{x-2}2=\frac{y+1}{-1}=\frac{z-1}3$ и плоскости $ {x+y+2z-1=0}$ .

Даны уравнения двух прямых. Требуется найти угол между этими прямыми.

Пример Найдите точку $ M_1$ , симметричную точке $ M(1;-2;1)$ относительно прямой $ {\gamma}$ :

Математика Лекции, конспекты, курсовые, примеры решения задач