Примеры выполнения контрольной работы по математике Интегрирование методом замены переменной Интегрирование по частям Пример Найти интеграл Вычисление определенных интегралов Функция нескольких переменных
Производная по направлению Функции комплексной переменной Вычисление двойного интеграла Вычисление тройного интеграла в декартовых координатах Векторная функция скалярного аргумента Потенциальные и соленоидальные векторные поля

Задача 2. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2yez – cos(x3 – z) + 2y2 + 3x получаем:

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем y и z постоянными] =

= 8xyez + sin(x3 – z)3x2 + 3 = 8xyez + 3x2sin( x3 – z) + 3;

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и z постоянными] =

= 4x2ez + 4y;

F = (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и y постоянными] =

= 4x2yez – sin (x3 – z).

По формулам (2) находим частные производные функции z = z(x, y):

 

По формуле (3) получаем частную производную функции y = y(x, z):

.

Ответы: ;

.

Задача 3. Дана сложная функция z = ln(2t – x2y), где x = cos3t, . Найти полную производную .

Решение. Используя формулу (4), получаем:

.

Подставив в полученный результат x = cos3t, , получим выражение полной производной  через независимую переменную t:

Ответ: .

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции z, сначала найдем все стационарные точки функции z = x2 – xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

1-го порядка равны нулю:

Решаем систему:

  Стационарная точка М(2, 0) (рис. 9) и является внутренней точкой области. Вычислим значение функции в этой точке:

.

  Теперь найдем наибольшее и наименьшее значения функции на границе области D. Граница является кусочно-заданной, поэтому будем проводить исследование функции z (x, y) отдельно на каждом участке границы.

а) Уравнение участка АВ имеет вид:  и функция z  является функцией одной переменной у:

.

Исследуем поведение z1 (y) по правилам нахождения наибольшего и наименьшего значений функции одной переменной на замкнутом промежутке. Как известно, непрерывная функция на замкнутом промежутке достигает своих наибольшего и наименьшего значений либо на концах промежутка, либо в стационарных точках внутри промежутка (если они есть).

Исследуем поведение функции z1(y) на участке АВ:  – стационарная точка на границе АВ, совпадающая с левым концом промежутка. Сравнивая значения функции z1(A) = z1(–1) = 4, z1(B) = z1(3) = 20, получаем: .

б) Уравнение участка АС имеет вид:  и функция z  является

функцией одной переменной x:

.

Исследуем поведение функции z2(х) на участке АС:  – стационарная точка на границе АС, лежащая внутри промежутка. Сравнивая значения функции z2(A) = z1(А) = 4, z2(С) = z2(4) = 8 и z2(х0) = z2(1,5) =1,75, получаем: .

в) Уравнение участка ВС имеет вид:  и функция z  является функцией одной переменной х:

Исследуем поведение функции z3(х) на участке ВС:  – стационарная точка на границе ВС, лежащая внутри промежутка. Сравнивая значения функции

z3(В) = z1(В) = 20, z3(С) = z2(С) = 8 и z3(х1) = z3(2,5) =1,25,

получаем: .

 Сравнивая все найденные значения функции, выбираем среди них наибольшее и наименьшее значения функции z (x, y) в области D:

zнаиб = z(В) = 20, zнаим = z(М) = 1.

2) Отметим на построенном ранее чертеже области D (рис. 9) точки, в которых функция имеет наибольшее и наименьшее значения: В(0,3) и М(2,0), а также все найденные в процессе решения точки, указав значения функции z(x, y) в этих точках.

Ответы: 1) zнаиб = z(В) = z(0,3) = 20, zнаим = z(М) = z(2,0) = 1; 2) рисунок 9.

Замена переменной в определенном интеграле