Примеры выполнения контрольной работы по математике Интегрирование методом замены переменной Интегрирование по частям Пример Найти интеграл Вычисление определенных интегралов Функция нескольких переменных
Производная по направлению Функции комплексной переменной Вычисление двойного интеграла Вычисление тройного интеграла в декартовых координатах Векторная функция скалярного аргумента Потенциальные и соленоидальные векторные поля

Потенциальные и соленоидальные векторные поля

Ротор векторного поля

Ротором (вихрем) векторного поля  называется вектор

.

Ротор – это векторная величина, которая является дифференциальной характеристикой векторного поля. Всякое векторное поле  сопровождается другим векторным полем   его роторов.

Для вычисления ротора удобно использовать его запись в форме определителя:

,  (19)

где вектор  – это векторно-дифференциальный оператор, называемый оператором Гамильтона или оператором «набла». При вычислении определителя умножению его элементов  на функции P, Q, R соответствует операция дифференцирования: ,  и т.д.

 

Потенциальное векторное поле и его потенциал

Векторное поле  называется потенциальным, если существует такая скалярная функция U(x, y, z), что . Функция U называется потенциалом векторного поля .

Из определения следует, что потенциальное векторное поле – это поле градиентов некоторого скалярного поля U(M) = U(x, y, z).

Пусть векторное поле  задано в некоторой области V.

Область V называется  односвязной, если любой замкнутый контур (кривую), лежащий в ней, можно путем непрерывной деформации стянуть в точку, не выходя за пределы данной области. Для плоской области D односвязность означает, что для любого замкнутого контура, лежащего в ней, ограниченная этим контуром часть области целиком принадлежит D.

Потенциальность векторного поля, заданного в односвязной области V, определяется при помощи его ротора: если во всех точках области V ротор векторного поля   – нулевой вектор, то это векторное поле является потенциальным.

Важное свойство потенциальных полей заключается в том, что если   – потенциальное векторное поле, заданное в некоторой односвязной области V, то выражение

 является полным дифференциалом функции U(x, y, z). В этом случае криволинейный интеграл вида

вдоль любой кривой ВС, принадлежащей V, не зависит от формы кривой и равен разности потенциалов в конечной и начальной точках:

.

Это свойство можно использовать для нахождения потенциала векторного поля при помощи криволинейного интеграла II рода. Для этого нужно взять фиксированную точку В(x0, y0, z0) и произвольную (текущую) точку С(x, y, z) и вычислить криволинейный интеграл по пути ВС:

.

При этом получаем потенциал U(x, y, z) векторного поля   с точностью до произвольного постоянного слагаемого.

 В качестве пути интегрирования ВС обычно выбирают ломаную ВEKC (рис. 8), звенья которой параллельны осям координат и E(x, y0, z0), K(x, y, z0).

В этом случае потенциал U(x, y, z) находят по формуле:

. (20)

Если в односвязной области задано потенциальное векторное поле силы

,

то с помощью потенциала можно найти работу силы  при перемещении единичной массы из одной заданной точки M этой области в другую точку N как разность значений потенциалов в этих точках:

. (21)

Соленоидальное векторное поле

Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Поле  называется векторным потенциалом векторного поля .

Практически соленоидальность векторного поля определяется при помощи его дивергенции: если во всех точках односвязной области V дивергенция векторного поля равна нулю, то это векторное поле является соленоидальным.

 

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – 2cos(2x – y)sin(2x – y)(2 – 0) = –sin(2(2x – y))2 = –2sin(4x – 2y).

При нахождении  считаем аргумент x постоянным:

  = (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – sin(2(2x – y))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =   = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

  =  = (–2sin(4x – 2y)) = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y) = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

  =  = (sin(4x – 2y)) = [считаем y постоянным] =

= cos(4x – 2y)(4x – 2y) = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:   = 4cos(4x – 2y),  = 4cos(4x – 2y)  .

Ответы: 1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

Замена переменной в определенном интеграле