Кратные интегралы. Двойной интеграл

Машиностроительное черчение
Выполнение сечений
Правила выполнения технических чертежей
Виды аксонометpических пpоекций
Эскиз детали
Нанесение размеров на чертежах
Чтение сборочных чертежей
Основные способы проецирования
Сопротивление материалов
Сопромат задачи
Сопротивление материалов примеры
Кинематика примеры решения задач
Статика примеры решения задач
Физика, электротехника
Электротехника
Электромагнетизм
Расчет режимов трехфазных цепей
Расчет электрических цепей постоянного и переменного тока
Методы расчета электрических цепей
Примеры  решения типовых задач по электротехнике
Физика оптика Курс лекций
Примеры решения задач по классической физике
Примеры решения задач контрольной работы по физике
Физика решение задач
Молекулярная физика и термодинамика
Курс лекций по атомной физике
Ядерная модель атома
Квантовая механика
Рентгеновские спектры
Первый газовый лазер
Металлы, диэлектрики и полупроводники по зонной теории.
Полупроводниковые диоды и триоды (транзисторы)
Радиоактивное излучение и его виды
Ядерные реакция

Понятие о ядерной энергетике

Информатика
Лекции Java
Язык JavaScript
Интернет
Язык PHP
Архитектура ПК
Высшая математика
Вычисление интегралов и рядов
Примеры вычисления интеграла
Примеры выполнения контрольной работы по математике
комплексные числа
Последовательности
Предел функции
Непрерывные функции
Дифференциальное исчисление
Формула Тейлора
Определенныеинтегралы
Двойной интеграл
Тройные интеграл
Криволинейные интегралы
Элементы теории поля
Интегралы от параметра
Элементы тензорного
исчисления
Примеры решения задач
Теория множеств
Построения графика функции
Элементарная математика
Интегралы
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Интегральное исчисление
Дифферинциальные урав.
Элементарная математика
Математический анализ
Мат. анализа часть 3
Комплексные числа
 

 

Определение двойного интеграла

Суммы Дарбу и их свойства Определения

Критерий интегрируемости Нижний и верхний интегралы

Критерий интегрируемости. Теорема Дарбу

Классы интегрируемых функций

Свойства определенного интеграла

Теоремы о среднем, аддитивность по множеству

Вычисление двойных интегралов

Интегрирование по прямоугольнику.

Интегрирование по области, представляющей собой криволинейную трапецию

Замена переменных в двойном интеграле

Отображение плоских областей. Криволинейные координаты

Изменение площади при отображениях

Пример: Найти объем тела, образован­ного вращением фигуры, ограниченной линия­ми у = , x = 0, у = 2 вокруг оси Оу.[5]

Решение: По формуле V =xdy.

 находим:

V = 2ydy = y = 8.

 

 

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функции у = f(х) ≥ 0, где х  [а;b], а функция у = f(х) и ее производная у' = f'(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох (рис 8).

Применим схему II (метод дифференциала).

1. Через произвольную точку х  [а; b] проведем плос­кость П, перпендикулярную оси Ох. Плоскость П пере­секает поверхность вращения по окружности с радиусом у - f(х). Величина S поверхности части фи­гуры вращения, лежащей левее плоскости, является функ­цией от х, т. е. s = s(х) (s(а) = 0 и s(b) = S).

2. Дадим аргументу х приращение Δх = dх. Через точку х + dх   [а; b] также проведем плоскость, перпендику­лярную оси Ох. Функция s = s(х) получит приращение Δs, изображенного на рисунке в виде “пояска”.

Подпись: Рис 8Найдем дифференциал площади ds, заменяя образо­ванную между сечениями фигуру усеченным конусом, об­разующая которого равна dl, а радиусы оснований рав­ны у и у + dу. Площадь его боковой поверхности равна ds =  (у + у + dу) • d1 = 2ydl + dydl. Отбрасывая произведение dу d1 как бесконечно малую высшего порядка, чем ds, получаем ds = 2уdl, или, так как d1 = dx.

Интегрируя полученное равенство в пределах от х = а до х = b, получаем

S= 2ydx.

Если кривая AB задана параметрическими уравнениями x = x(t), y = y(t), t≤ t ≤ t, то формула для площади поверхности вращения принимает вид

S = 2dt.

 

 

Пример: Найти площадь поверхности шара радиуса R.[5]

Решение: Можно считать, что поверхность шара образована вращением полуокружности y = , -R ≤ x ≤ R, вокруг оси Ox. По формуле S= 2ydx находим

S = 2 =

 

 

Вычисление площадей плоских фигур

Прямоугольные координаты

Пусть функция f(х) непрерывна на сегменте [а;b]. Если f(х )≥0 на [а; b] то площадь S криволинейной трапеции, ограниченной линиями у =f(х), у = 0, х = а, х = b, равна интегралу

Если же f(x) ≤ 0 на [а; b] то — f(х) ≥ 0 на [а; b]. Поэтому площадь S соответствующей криволинейной трапеции выразится формулой

  или

 

Если, наконец, кривая y=f(х) пересекает ось Ох, то сегмент [а;b] надо разбить на части, в пределах которых f(х) не меняет знака, и к каждой такой части применить ту из формул, которая ей соот­ветствует.

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример. Найти площадь плоской фигуры, ограниченной параболой y = x2, прямыми х=1, х = 3 и осью Ох (рис 9) . [1]

Решение. Пользуясь формулой , нахо­дим искомую площадь

S =

Рис 10

 
Пример. Найти площадь плоской фигуры, ограниченной графиком функции у = sinх и осью абс­цисс при условии  (рис 10). [1]

Решение. Разбиваем сег­мент [0; ] на два сегмента [0; ] и [; 2]. На первом из них sinx ≥ 0, на втором — sinx ≤ 0. Следовательно, ис­пользуя формулы

  и  , имеем, что искомая площадь

 

 

Полярные координаты.

 Пусть требуется определить площадь сектора ОАВ, ограниченного лу­чами  = ,  =  и кривой АВ (рис 11), заданной в полярной системе координат уравнением r = r (), где r () — функция, непрерывная на сегменте [; ].

Рис 11

 

Рис 12

 
Разобьем отрезок [; ] на п частей точками  = о<1 < ...<  < =  и положим: Δ =  —  k = 1, 2, ..., n. Наи­большую из этих разностей обозначим через : = max Δ. Разо­бьем данный сектор на п частей лучами  =  (k=1, 2, ..., п — 1). Заменим k-й элементарный сектор круговым сектором радиуса r(), где .

Тогда сумма  - приближенно площадь сектора OAB. Отсюда:

 

 

 

 

Пример. Найти площадь плоской фигуры, ограниченной кардиоидой г = a(1+соs) (рис 12). [7]

Решение. Учитывая симметричность кривой относительно полярной оси, по формуле  получаем:

 

 

 

Механические приложение определенного интеграла

Работа переменной силы

Пусть материальная точка М перемещается вдоль оси Ох под дей­ствием переменной силы F = F(х), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (а <bЬ), находится по формуле

A =

Пример. Какую работу нужно затратить, чтобы растянуть пру-'—' жину на 0,05 м, если сила 100 Н растягивает пружину на 0,01 м?[5]

Решение: По закону Гука упругая сила, растягивающая пружину, про­порциональна этому растяжению х, т. е. F = kх, где k — коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растяги­вает пружину на х = 0,01 м; следовательно, 100 = k 0,01, откуда k = 10000; следовательно, F =10000х.

Искомая работа на основании формулы A =

 равна

A =

 

 

 

 

Пример. Найти работу, которую необходимо затратить, чтобы выкачать через край жидкость из вертикального цилиндрического резер­вуара высоты Н м и радиусом основания R м (рис 13).[5]

Подпись: Рис 13Решение: Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р • Н. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.

Для решения поставленной задачи применим схему II (метод дифференциала). Введем систему координат.

1. Работа, затрачиваемая на выкачивание из резер­вуара слоя жидкости толщиной х (0 ≤ х ≤ Н), есть функция от х, т. е. А = А(х), где (0 ≤ х ≤ Н)( A(0) = 0, A(H) = А0).

  2. Находим главную часть приращения ΔA при из­менении х на величину Δх = dx, т. е. находим диффе­ренциал dА функции А(х).

Ввиду малости dх считаем, что “элементарный” слой жидкости находится на одной глубине х (от края резервуара). Тогда dА = dрх, где dр — вес этого слоя; он равен g АV, где g — ускорение свободногопадения,  — плотность жидкости, dv — объем “элементарного” слоя жидкости (на рисунке он выделен), т. е. dр = g. Объем указанного слоя жидкости, очевидно, равен , где dx— высота цилиндра (слоя),   — площадь его основания, т. е. dv = .

Таким образом, dр = . и

3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим

A

 

 

 

Путь, пройденный телом

Пусть материальная точка перемещается по прямой с переменной ско­ростью v =v(t). Найдем путь S, пройденный ею за промежуток времени от t до t2.

Решение: Из физического смысла производной известно, что при дви­жении точки в одном направлении “скорость прямолинейного движения

равна производной от пути по времени”, т. е. v(t) = . Отсюда следует, что dS = v(t)dt. Интегрируя полученное равенство в пределах от t до t,

получаем S =

Пример. Найти путь, пройденный телом за 4 секунды от начала движения, если скорость тела v(t) = 10t + 2 (м/с).[5]

Решение: Если v(t) = 10t + 2 (м/с), то путь, пройденный телом от на­чала движения (t = 0) до конца 4-й секунды, равен

S =

 

 

 

Давление жидкости на вертикальную пластинку

По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а вы­сотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р =g, где g — ускорение свободного падения,  — плотность жидкости, S — площадь пластинки, h — глубина ее погружения.

По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глу­бинах.

Пусть в жидкость погружена вертикально пластина, ограниченная ли­ниями х = а, х = b, y и y. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).

1. Пусть часть искомой величины Р есть функция от х: р = р(х), т. е. р = р(х) — да­вление на часть пластины, соответствующее от­резку [а; b] значений переменной х, где х  [a; b] (р(a) = 0, р(b) = Р).

2. Дадим аргументу х приращение Δx = dх. Функция р(х) получит приращение Δр (на рисун­ке — полоска-слой толщины dх). Найдем диффе­ренциал dр этой функции. Ввиду малости dх бу­дем приближенно считать полоску прямоуголь­ником, все точки которого находятся на одной глубине х, т. е. пластинка эта — горизонталь­ная.

Тогда по закону Паскаля dр =.

3. Интегрируя полученное равенство в пределах от х = а до х = b, получим

P =   или P =

 

 

 

Пример. Определить величину давле­ния воды на полукруг, вертикально погружен­ный в жидкость, если его радиус R, а центр О находится на свободной поверхности воды (рис 15).[5]

Решение: Воспользуемся полученной форму­лой для нахождения давления жидкости на вер­тикальную пластинку. В данном случае пластинка ограничена линиями у = -, y, x = 0, x = R.

P =

Рис 15

 

 

 

 

Вычисление статических моментов и координат центра тяжести плоской кривой

Пусть на плоскости Оху задана система материальных точек М), М2(х2;y), … , M(x;y) соответственное массами m,m, … , m„.

Статическим моментом SХ системы материальных точек относи­тельно оси Ох называется сумма произведений масс этих точек на их ординаты (т. е. на расстояния этих точек от оси Ох):

  Аналогично определяется статистический момент S этой системы относительно оси Oy: S= .

Если массы распределены непрерывным образом вдоль некоторой кри­вой, то для выражения статического момента понадобится интегрирова­ние.

Пусть у =f/(х) (a ≤ х ≤ b) — это уравнение материальной кривой АВ. Будем считать ее однородной с постоянной линейной плотностью  ( = const).

Для произвольного х  [а;b] на кривой АВ найдется точка с коорди­натами (х; у). Выделим на кривой элементарный участок длины dl, содер­жащий точку (х;у). Тогда масса этого участка равна . Примем этот участок dl приближенно за точку, отстоящую от оси Ох на расстоянии у. Тогда дифференциал статического момента dS (“элементарный момент”) будет равен , т.е. .

Отсюда следует, что статический момент SХ кри­вой АВ относительно оси Ох равен

Аналогично находим S:

Статические моменты SХ и SУ кривой позволя­ют легко установить положение ее центра тяжести (центра масс).

Центром тяжести материальной плоской кривой у = f(х), х 6 [а; b] называется точка плоскости, обладающая следующим свойством: если в этой точке сосредоточить всю массу т заданной кривой, то статический момент этой точки относительно любой координатной оси будет равен ста­тическому моменту всей кривой у = f(х) относительно той же оси. Обо­значим через С(хс;ус) центр тяжести кривой АВ.

Из определения центра тяжести следуют равенства  и  или  и . Отсюда ,

или

 

 

 

 

Пример. Найти центр тяжести однородной дуги окружности x + y= R2, расположенной в первой координатной четверти (рис 16).[5]

Решение: Очевидно, длина указанной окружности равна , т.е. . Найдем статистический момент ее относительно оси Ох. Так как уравнение дуги есть  и , то ()

.

Стало быть,

Так как данная дуга симметрична относительно биссектрисы первого координатного угла, то хс = ус = Итак, центр тяжести имеет координаты (;).

 
На http://www.mostrener.ru тренировки с личным тренером.
Высшая математика Лекции, конспекты, курсовые, примеры решения задач