Вычисление интегралов и рядов Вычисление двойного интеграла Приложения двойного интеграла Задача о массе пространственного тела Замена переменных в тройном интеграле Задача о массе кривой Задача о массе поверхности векторное поле
Свойства сходящихся рядов Интегральный признак Коши Признак Даламбера. Радикальный признак Коши Знакопеременные ряды Знакочередующиеся ряды Функциональные ряды Применение степенных рядов

Замечание о несобственных двойных интегралах.

Точно так же, как и в определенных интегралах, вводят несобственные двойные интегралы двух типов: интеграл от непрерывной функции по неограниченной области (первого рода) и интеграл от разрывной функции по ограниченной области (второго рода).

Интеграл первого рода определяют как предел последовательности двойных интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной неограниченной области. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Интеграл второго рода определяют как предел последовательности интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной области и исключающим точку разрыва. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Пример. Показать, что несобственный интеграл первого рода   по области  сходится при  и расходится при .

Показать, что несобственный интеграл первого рода  по области  сходится при  и расходится при .Вычислим этот интеграл по области .

.

=

=

 Часто расширение математических знаний позволяет решать задачи, которые не получались старыми методами.

Пример. Вычислить интеграл Пуассона .

Неопределенный интеграл  «не берется». Но двойной интеграл по области  равен

I =.

С другой стороны, переходя к полярным координатам, получим

I = .

Поэтому = . По четности .

Вычисление криволинейного интеграла от полного дифференциала