Вычисление интегралов и рядов Вычисление двойного интеграла Приложения двойного интеграла Задача о массе пространственного тела Замена переменных в тройном интеграле Задача о массе кривой Задача о массе поверхности векторное поле
Свойства сходящихся рядов Интегральный признак Коши Признак Даламбера. Радикальный признак Коши Знакопеременные ряды Знакочередующиеся ряды Функциональные ряды Применение степенных рядов

Радикальный признак Коши.

Конечная форма радикального признака Коши.

 Пусть , тогда ряд сходится.

Пусть , тогда ряд расходится.

Доказательство. Пусть . Тогда , рядсходится по первому признаку сравнения с бесконечно убывающей геометрической прогрессией.

Пусть . Тогда , ряд расходится, так как необходимый признак сходимости ряда не выполнен.

Предельная форма радикального признака Коши.

Пусть , тогда ряд сходится.

Пусть , тогда ряд расходится.

Доказательство. Пусть , тогда .

  при малом . Ряд сходится по конечной форме радикального признака Коши.

Пусть , тогда .  при малом . Тогда , ряд расходится, так как необходимый признак сходимости ряда не выполнен.

Пример.

, ряд сходится по радикальному признаку Коши в предельной форме.

Замечание. У каждого признака сходимости есть своя «зона нечувствительности». Ни признак Даламбера, ни радикальный признак Коши не позволяют установить расходимость гармонического ряда. Проверьте это. Гармонический ряд расходится, но расходится так слабо, что попадает в «зону нечувствительности» указанных признаков. Интегральный признак Коши имеет меньшую «зону нечувствительности» и позволяет установить расходимость гармонического ряда.

Теорема Дирихле о возможности перестановки местами членов ряда в сходящихся знакоположительных рядах.

Пусть - сходящийся знакоположительный ряд. Тогда его члены можно переставлять, менять местами, полученный ряд будет сходиться и иметь ту же сумму.

Доказательство. Проведем доказательство по индукции.

Пусть меняются местами два члена ряда . Тогда в исходном и полученном перестановкой членов ряде частичные суммы, начиная с  будут совпадать. Следовательно, ряд, полученный перестановкой двух членов ряда, , будет сходиться и иметь ту же сумму.

Пусть при перестановке местами  членов ряда ряд сходится и имеет ту же сумму.

Пусть переставляются  членов ряда. Эта перестановка сводится к перестановке  членов ряда, а затем к перестановке еще какого-либо члена с каким-либо другим (перестановке двух членов ряда).

По индуктивному предположению при перестановке местами  членов ряда ряд сходится и имеет ту же сумму. Ряд, полученный перестановкой двух членов ряда, будет сходиться и иметь ту же сумму. Следовательно, и при перестановке  членов ряда ряд будет сходиться и иметь ту же сумму.

Вычисление криволинейного интеграла от полного дифференциала