Вычисление интегралов и рядов Вычисление двойного интеграла Приложения двойного интеграла Задача о массе пространственного тела Замена переменных в тройном интеграле Задача о массе кривой Задача о массе поверхности векторное поле
Свойства сходящихся рядов Интегральный признак Коши Признак Даламбера. Радикальный признак Коши Знакопеременные ряды Знакочередующиеся ряды Функциональные ряды Применение степенных рядов

Инвариантное определение ротора.

Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим

.

Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур  к точке M, получим

Это и есть инвариантное определение ротора.

Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление.

Если направление  совпадает с направлением ротора и  - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля.

Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая.

Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью

Векторное поле линейной скорости .

,

Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.

Теорема (о полном дифференциале) для пространственной кривой.

Пусть дуга AB лежит на кусочно-гладкой поверхности S, пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны и имеют непрерывные частные производные на S. Тогда следующие четыре утверждения эквивалентны.

не зависит от формы дуги (от пути интегрирования), а зависит только от начальной и конечной точек дуги.

Для любого замкнутого контура  

- полный дифференциал.

Теперь переход от пункта 3) к пункту 2) легко сделать по формуле Стокса.

Криволинейный интеграл от полного дифференциала можно вычислять по формуле

= , так как интеграл не зависит от формы дуги (пути интегрирования).

Криволинейный интеграл от полного дифференциала можно вычислять также по формуле Ньютона – Лейбница

= , где  - потенциал векторного поля ().

Потенциальное поле и его свойства.

Векторное поле  называется потенциальным, если существует такое скалярное поле  (потенциал векторного поля ), что =.

Замечание. Если поле  - потенциально, то  = - полный дифференциал. Тогда - полный дифференциал. Поэтому свойства потенциального поля можно сформулировать и доказать как следствия теоремы о полном дифференциале.

Вычисление криволинейного интеграла от полного дифференциала