Вычисление интегралов и рядов Вычисление двойного интеграла Приложения двойного интеграла Задача о массе пространственного тела Замена переменных в тройном интеграле Задача о массе кривой Задача о массе поверхности векторное поле
Свойства сходящихся рядов Интегральный признак Коши Признак Даламбера. Радикальный признак Коши Знакопеременные ряды Знакочередующиеся ряды Функциональные ряды Применение степенных рядов

Векторное поле.

Векторная линия - линия, в каждой точке которой вектор поля направлен по касательной к ней.

Уравнения векторной линии легко получить из условия коллинеарности векторов поля  и касательной

.

Пример. Написать уравнения векторных линий векторного поля

- линии уровня – окружности (С>0).

Векторной трубкой называется поверхность, образованная векторными линиями.

Формула Остроградского – Гаусса.

Пусть компоненты векторного поля  непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой области V и на ее кусочно гладкой границе .

Тогда справедлива формула Остроградского – Гаусса

.

Заметим, что левая часть формулы представляет собой поток векторного поля через поверхность .

Доказательство. 1) Формула Остроградского – Гаусса, в силу произвольности P, Q, R состоит из трех частей, в каждую из которых входит одна из компонент векторного поля P, Q, R. В самом деле, можно взять P = 0, Q = 0 и доказывать отдельно часть формулы в которую входит только R. Остальные части формулы (при P = 0, R = 0, Q = 0, R = 0) доказываются аналогично. Будем доказывать часть формулы

2) Для доказательства выбранной части формулы представим пространственную область V в виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными оси OZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов по полным поверхностям цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических тел будут сокращаться из-за противоположного направления внешних нормалей на общих границах.

Итак, будем доказывать соотношение  для цилиндрического тела V, проектирующегося в область D на плоскости OXY. Пусть «верхняя» граница цилиндрического тела – поверхность  описывается уравнением , «нижняя» граница – поверхность   описывается уравнением . Боковую поверхность цилиндрического тела, параллельную оси OZ, обозначим .

Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, , так как нормаль на боковой поверхности ортогональна оси OZ и .

Заметим также, что на «верхней» поверхности  , а на «нижней поверхности  . Поэтому при переходе от поверхностного интеграла по к двойному интегралу по области D и обратно надо менять знак, а при переходе от поверхностного интеграла по к двойному интегралу по области D и обратно менять знак не надо .

D

 

 

-

= =

+ =

Таким образом, соотношение  доказано.

Замечание. Формулу Остроградского – Гаусса можно записать в «полевом» виде

  - поток векторного поля через замкнутую поверхность  равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью .

Дивергенция векторного поля (расходимость) есть .

Дивергенция – это характеристика векторного поля, инвариантная относительно системы координат. Покажем это.

Вычисление криволинейного интеграла от полного дифференциала