Вычисление интегралов и рядов Вычисление двойного интеграла Приложения двойного интеграла Задача о массе пространственного тела Замена переменных в тройном интеграле Задача о массе кривой Задача о массе поверхности векторное поле
Свойства сходящихся рядов Интегральный признак Коши Признак Даламбера. Радикальный признак Коши Знакопеременные ряды Знакочередующиеся ряды Функциональные ряды Применение степенных рядов

Запись поверхностного интеграла второго рода.

Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов

,

, . Знак «+» выбирается, если угол между нормалью к поверхности и осью (OX в первом интеграле, OY во втором, OZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «–» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности .

Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1

Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. .

 Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z =1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани , площадь грани – треугольника по теореме Пифагора равна  (проверьте).

Поток равен  

Поток равен .

Вычислим поток через двойные интегралы проектированием на координатные плоскости. Поток радиус-вектора через координатные плоскости нулевой. Тогда

=

=.

Получили тот же результат.

Вычисление криволинейного интеграла от полного дифференциала