Коническая и цилиндрическая поверхности
Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Исследования характера поведения функций Определенные и неопределенные интегралы
Кратные интегралы. Двойной интеграл Тройные и n-кратные интегралы Криволинейные интегралы Элементы теории поля Интегралы, зависящие от параметра Примеры решения задач типового расчета Курс лекций по атомной физике

Отображение, взаимно-однозначное соответствие, счетное и несчетные множества

Даны  множества A и B. Отображение A в B (или функция определенная на A со значениями в B) - соответствие или закон (обозначим его f ), которое каждому a   A сопоставляет единственное b Î B, A  B, f: A ® B, b = f(a).

a - прообраз, b - образ при отображении f.

Отображение из A в B называется взаимно-однозначным, если

1) разные элементы из A имеют разные образы

2) каждый элемент из B является образом некоторого элемента из A

Примеры решения задач курслекций Формула Маклорена Дифференциальное исчисление функции одной переменной

Эквивалентные множества A ~ B или множества одинаковой мощности, если существует взаимно-однозначное соответствие между элементами этих множеств.

Счетное множество A ~ N

Пример: Множество рациональных чисел счетно. Определенные интегралы, несобственные интегралы Справочный материал и примеры к выполнению контрольной работы по математике

Одно из важных свойств счетных множеств:

Объединение конечного или счетного числа счетных множеств является счетным множеством.

Несчетные множества

Бесконечное множество, не являющееся счетным, называется несчетным. Множество [0,1] имеет большую мощность, чем N. Множество эквивалентные по мощности отрезку [0,1] называются множествами мощности континуума. Множество действительных чисел R - несчетное множество, это множество является множеством мощности континуума.

  Определитель единичной матрицы равен 1.

 Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

 Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.

Свойство1. Важным свойством определителей является следующее соотношение:

 det A = det AT; 

Сойство 2. det ( A ± B) = det A ± det B.

Свойство 3. det (AB) = detA×detB

Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

Определение: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

 Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d1 ± d2  , e = e1 ± e2 , f = f1 ± f2 , то верно:

Высшая математика Лекции, конспекты, курсовые, примеры решения задач