Назначение и структура производственной среды http://4d-art.ru/
Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Исследования характера поведения функций Определенные и неопределенные интегралы
Кратные интегралы. Двойной интеграл Тройные и n-кратные интегралы Криволинейные интегралы Элементы теории поля Интегралы, зависящие от параметра Примеры решения задач типового расчета Курс лекций по атомной физике

Предел функции. Непрерывность

Элементарные функции Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности. Справочный материал и примеры к выполнению контрольной работы по математике

Функции

y=c, y=xa, y=ax (a>0), y=logax (a > 0), тригонометрические и их обратные называются основными элементарными функциями.

Всякая функция, полученная применением конечного числа арифметических операций и суперпозиций над основными элементарными функциями называется элементарной функцией.

Примеры решения задач курслекций Производная функции, ее геометрический и физический смысл Дифференциальное исчисление функции одной переменной

Примеры: Многочлен n степени = a0+ a1x+…+ am-1xm-1+ amxm (am¹0), дробно рациональная функция . Математика решение задач Теорема Ферма

Решение произвольных систем линейных уравнений.

 Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

  Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:

 , (1)

где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.

 Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.

 

 Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.

 Определение. Для системы линейных уравнений вида (1) матрица

А =  называется матрицей системы, а матрица

А*=  называется расширенной матрицей системы

 Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна.

Высшая математика Лекции, конспекты, курсовые, примеры решения задач