Вращение прямой http://pasha-2309.ru/
Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Исследования характера поведения функций Определенные и неопределенные интегралы
Кратные интегралы. Двойной интеграл Тройные и n-кратные интегралы Криволинейные интегралы Элементы теории поля Интегралы, зависящие от параметра Примеры решения задач типового расчета Курс лекций по атомной физике

Последовательности

Верхний и нижний пределы последовательности Справочный материал и примеры к выполнению контрольной работы по математике Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Определение. (Наибольший частичный предел последовательности {xn} называется ее верхним пределом, , где X – множество всех частичных пределов. Можно показать, что . Аналогично, определяется нижний предел .

Замечание. Если , (число или символ), то . Это является непосредственным следствием теоремы 1.

Теорема. У любой последовательности существует как верхний, так и нижний пределы. (без доказательства)

1) Если последовательность неограниченна сверху, то

2) Ограничена сверху. A- множество частичных пределов

Примеры решения задач курслекций Функция Примеры решения задач курслекций f(x) = cosx. Дифференциальное исчисление функции одной переменной

. Математика решение задач Механические приложения
двойного интеграла

Осталось показать, что b есть частичный предел. Действительно, в любой окрестности b есть хотя бы один частичный предел, следовательно, бесконечно много членов {xn}.

 Пример. Определить ранг матрицы.

~ ~ RgA = 2.

 Пример: Определить ранг матрицы.

~ ~ ~ Rg = 2.

 

Пример. Определить ранг матрицы.

~, Þ Rg = 2.

 Если с помощью элементарных преобразований не удается найти матрицу, эквивалентную исходной, но меньшего размера, то нахождение ранга матрицы следует начинать с вычисления миноров наивысшего возможного порядка. В вышеприведенном примере – это миноры порядка 3. Если хотя бы один из них не равен нулю, то ранг матрицы равен порядку этого минора.

Высшая математика Лекции, конспекты, курсовые, примеры решения задач